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 Hadron-hadron correlation 

: Source functionS(r)

φ(−)(q, r) : Relative wave function

• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

• Depends on …

Collision detail (Ai, energy, centrality)

• Including information of…

size of hadron source,  
momentum dependence, weight…

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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• Depends on …

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

Hadron correlation in high energy nuclear collision

 Hadron-hadron correlation 
• Koonin-Pratt formula : 

C(q) ≃ ∫ d3r S(r) |φ(−)(q, r) |2

q = (m2k1 − m1k2)/(m1 + m2)

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 
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 Analytic model for ideal cases

R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

Hadron correlation in high energy nuclear collision

: Source functionS(r)
φ(−)(q, r) : Relative wave function

• Gaussian source with radius  
• Approximate  by asymptotic wave func. 

•   with scat. length 

R
φ

ℱ(q) = [−1/a0 − iq]−1 a0
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FIG. 1. The correlation function C(LL)(q) with re↵ = 0 as a function
of R/a0 for different qR (upper panel) and as a function of qR for
different R/a0 value (lower panel). In the present sign convention,
a0 > 0 corresponds to the existence of a bound state.

where [dr⇤] = dr⇤S(r) with S(r) being properly normal-
ized as

R
[dr⇤] = 1. One immediately finds that the deviation

of the wave function from the non-interacting one is directly
translated into the correlation function and that the relative
source function acts as a weight factor at relative distance r.

Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated by the
contribution outside the interaction range such that the wave
function can be approximated by its asymptotic form  q(r) ⇠
e
�i� sin(qr+�)/(qr) with � being the S-wave scattering phase

shift. Employing a Gaussian source S(r) / exp(�r
2
/4R2)

and the effective range formula for small q,

q cot � ' � 1

a0
+

1

2
reffq

2
, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known
as the Lednický-Lyuboshits (LL) formula [29],

C
(LL)(q) = 1 +

|f(q)|2

2R2
F3

⇣
reff

R

⌘
+

2Ref(q)p
⇡R

F1(2qR)

� Imf(q)

R
F2(2qR). (13)

Here f(q) = (q cot � � iq)�1 is the scattering amplitude,
F1(x) =

R x
0 dte

t2�x2

, F2(x) = (1 � e
�x2

)/x, and F3(x) =
1 � x/(2

p
⇡). Since the scattering length dominates the be-

havior of the phase shift at small q, this correlation function
is mainly determined by the scattering length and the source
size: For reff = 0, C(LL)(q) is a function of two dimensionless
variables, qR and R/a0 [17].

Figure 1 represents characteristics of the correlation func-
tion C

(LL)(q) with re↵ = 0. For a fixed qR (upper panel), the
correlation function exhibits non-monotonic changes against
the ratio of the system size to the scattering length. It shows a
strong peak around R/a0 ⇠ 0 for small qR due to the strong
enhancement of the wave function. We call the region where
C(q) is enhanced as the “unitary region” throughout this pa-
per. The peak is smeared as qR is increased. As the attraction
becomes weaker (a0 < 0), the correlation is also weakened
to exhibit monotonic decrease with decreasing R/a0 and in-
creasing qR. On the other hand, if the attraction is strong
enough to accommodate a bound state (a0 > 0), C(q) rapidly
decreases with R/a0 then takes values less than unity imply-
ing the depletion of correlated pairs at small qR. The deple-
tion can be understood by so-called the structural core; the
scattering wave function needs to be orthogonal to the bound
state wave function, then it has a node in the interaction range
as if there is a repulsive core. Thus the squared wave function
is suppressed on average.

The above properties of C(q) are essential in order to ex-
tract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in the lower panel of Fig. 1. Consider
the case where C(q) � 1 at small qR. It indicates that the
system is in the unitary region where |R/a0| is small, while
the sign of a0 is unknown. However, by increasing R with
a0 and qR fixed, C(q) eventually becomes smaller than 1 for
positive a0, while C(q) is always larger than 1 for negative
a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics in
the case of identical pairs (HBT effect), from the Coulomb
interaction, and from the coupled channel effect [30]. Fur-
thermore, the correlation from the HBT effect is affected by
the collective flow through the modification of the source ge-
ometry. As a result, even for non-identical pairs, the absolute
magnitude of C(q) with respect to unity is not always a useful
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No bound state ( )a0 < 0

Morita, et al., PRC101 (2020)

C(q) ≃ ∫ d3r S(r)|φ(−)(q, r) |2
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analysis delivered a scattering length and an e↵ective range of f�1
0 = �0.91±0.31+0.07

�0.56 fm�1

and d0 = 8.52± 2.56+2.09
�0.74 fm, and these values correspond to a repulsive interaction. How-

ever, it was shown that the values and the sign of the scattering parameters strongly depend

on the treatment of feed-down contributions from weak decays to the measured correlation.

A re-analysis of the data outside the STAR collaboration extracted a positive value for

f�1
0 corresponding to a shallow attractive interaction potential (32). The ⇤–⇤ correlations
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Figure 4

(Color online) Right panel: Exclusion plot of the scattering parameters for the ⇤–⇤ interaction
evaluated by testing the di↵erent values against the ⇤–⇤ correlation. Left panel: Correlation
function of p–⌦� pairs measured by ALICE in high multiplicity pp collisions atp
s = 13 TeV (40). The data are shown by the black symbols, the systematic errors are shown by

the grey boxes. The green line represents the expected correlation function by taking into account
only the Coulomb interaction, its width is determined by the uncertainty in the source radius.
The blue and orange bands consider both Coulomb and strong interaction by the HAL QCD
collaboration (81). The orange band considers for the strong interaction only the elastic
contributions, the blue band considers elastic and inelastic contributions, its width represents the
uncertainties associated with the lattice QCD calculations, and the grey band represents, in
addition, the uncertainties associated with the determination of the source radius. The source
radius, determined experimentally, is 0.95± 0.06 fm. The inset shows in detail the correlation
function around unity. For more details see text.

measured in pp and p-Pb collisions by ALICE at
p
sNN = 7, 13 TeV and 5.02 TeV, respec-

tively (35, 38) were also employed to study the interaction, and the residual correlations

were treated by means of a novel data-driven method. Since the statistics of the ⇤–⇤ pairs

with small relative momentum was limited, instead of extracting the scattering parameters

from the fit of the correlation function a di↵erent approach was carried out (38). A scan

of di↵erent combinations of scattering parameters (f�1
0 ,d0) in the range f�1

0 2 [�2, 5]

fm�1 and d0 2 [0, 18] fm was performed. For each combination of values of the scattering

parameters the correlation function is evaluated for several meson-exchange models of the

⇤–⇤ interaction by using the Lednický-Lyuboshitz (LL) method. The agreement with the

experimental correlation function, using all data samples from pp collisions at
p
s = 7, 13

TeV and p-Pb collisions at
p
sNN = 5.02 TeV, is quantified in terms of a confidence level fol-

lowing the method in (82). The CATS framework is used to cross check the results from the

LL method; the di↵erences in the correlation functions obtained using the two methods are

negligible. Also the gaussian source approximation, inherent to the LL method, is validated

by cross checks using the source profile predicted by the EPOS transport model (67, 44)

and considering the e↵ects of short lived resonances. The results, expressed in number of

standard deviations (n�) are shown in the left panel of Fig. 4. The black hatched area rep-

12 Author et al.
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 dibaryon and  correlation NΩ pΩ
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Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 

STAR Collaboration / Physics Letters B 790 (2019) 490–497 495

Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 
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-  correlation function and H dibaryonΛΛ NΞ

• Lattice HAL QCD  coupled-channel potentialΛΛ-NΞ
K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

• Strong attraction in   channel J = 0, I = 0 NΞ

• Long history of discussion on  sector   
   related to ( )-dibaryon. 

(J, I) = (0,0)
H uuddss

R. L. Jaffe, PRL 38 (1977), 195. 

apΞ−(J=0)
0 = − 1.21 − i1.52

 dibaryon state is just barely unbound.H

pΞ−ΛΛ nΞ0
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FIG. 6. Experimental and theoretical correlation functions of the pΞ− pairs (the upper panels) and the ΛΛ pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [9, 14, 15]: The statistical error and systematic error are denoted by the vertical line and
the shaded bar, respectively. Solid lines are the theoretical results with with statistical and systematic uncertainties represented by the shaded
region. The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the pΞ− (ΛΛ) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.

 ALICE 
  13 TeV
pΞ−

pp
 ALICE 

 Pb 5.02 TeV
pΞ−

p

• Full coupled-channel analysis with HAL QCD potential is  
consistent with  and  correlation dataΛΛ pΞ− Y. Kamiya, K. Sasaki, T. Fukui, K. Morita,  

K. Ogata, A. Ohnishi, T. Hatsuda, Phys.Rev.C 105 (2022) 1, 014915
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(Neither the coupled channel effect nor the threshold dif-
ference has been considered in Refs. [14, 15, 24], while
the Coulomb interaction was not considered in Ref. [26].)
We note that the agreement of the correlation function in
Refs. [14, 15] and that in the present work comes from the

fact that the coupled-channel effects are not significant in the
pΞ− correlation function due to weak transition between pΞ−

and ΛΛ.
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f0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 

First study of the two-body scattering involving charm hadrons ALICE Collaboration
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Figure 2: Genuine pD− correlation function compared with different theoretical models (see text for details). The
null hypothesis is represented by the curve corresponding to the Coulomb interaction only.

red band. The purple band in Fig. 1 represents the total background that includes all contributions with
their corresponding weights. Finally, the genuine pD− correlation function is obtained by solving Eq. 1
for CpD−(k∗) and is shown in Fig. 2. The possible enhancement at low k∗ could be attributed to an overall
attractive genuine pD− final-state interaction.

The systematic uncertainties of the genuine pD− correlation function, CpD−(k∗), include (i) the un-
certainties of Cexp(k∗), (ii) the uncertainties of the λi weights, and (iii) the uncertainties related to the
parametrization of the background sources. In particular, the systematic uncertainties of Cp(K+π−π−)(k

∗)
are estimated by varying the proton and D−-candidate selection criteria and the range of the fit of the
C(k∗) parametrized from the invariant mass sidebands. The uncertainties of the λi weights are derived
from the systematic uncertainties on the D− purity and fnon-prompt reported above. The systematic un-
certainty of CpD∗−(k∗) is due to the uncertainty on the emitting source. The overall relative systematic
uncertainty on CpD−(k∗) resulting from the different sources is of 10% in the lowest k∗ interval.

The resulting genuine CpD−(k∗) correlation function can be employed to study the pD− strong interaction

that is characterized by two isospin configurations and is coupled to the nD
0

channel. First of all, in order
to assess the effect of the strong interaction on the correlation function, only the Coulomb interaction is
considered. The corresponding correlation function is obtained using CATS [73]. Secondly, various
theoretical approaches to describe the strong interaction are benchmarked, including meson exchange
(Haidenbauer et al. [21]), meson exchange based on heavy quark symmetry (Yamaguchi et al. [24]), an
SU(4) contact interaction (Hoffmann and Lutz [22]), and a chiral quark model (Fontoura et al. [23]). The
relative wave functions for the model [21] are provided directly, while for the models from [22–24] they
are evaluated by employing a Gaussian potential whose strength is adjusted to describe the corresponding
published I = 0 and I = 1 scattering lengths listed in Table 1. The pD− correlation function is computed
within the Koonin–Pratt formalism, taking into account explicitly the coupling between the pD− and nD0

channels [75] and including the Coulomb interaction [76]. The finite experimental momentum resolution
is considered in the modeling of the correlation functions [38].

The outcome of these models is compared in Fig. 2 with the measured genuine pD− correlation function.
The degree of consistency between data and models is obtained from the p-value computed in the range
k∗ < 200 MeV/c. It is expressed by the number of standard deviations nσ reported in Table 1, where the
nσ range accounts, at one standard deviation level, for the total uncertainties of the data points and the

6
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Table 1: Scattering parameters of the different theoretical models for the ND interaction [21–24] and degree of
consistency with the experimental data. Negative scattering parameters correspond to either a repulsive interaction
or to an attractive interaction with the presence of a bound state [24]. Positive scattering parameters correspond to
an attractive interaction.

Model f0 (I = 0) f0 (I = 1) nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [21]
– g2

σ/4π = 1 0.14 −0.28 (1.2–1.5)
– g2

σ/4π = 2.25 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [22] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [24] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [23] 0.16 −0.25 (1.1–1.5)

models. The data are compatible with the Coulomb-only hypothesis within (1.1–1.5)σ . Nevertheless,
the level of agreement slightly improves in case of the model by Yamaguchi et al. as reported in Table 1,
where the nσ values are summarized together with the scattering lengths f0. Here, the high-energy
physics convention on the scattering-length sign is adopted: a negative value corresponds to either
a repulsive interaction or to an attractive one with presence of a bound state, while a positive value
corresponds to an attractive interaction. Most notably, this is the only model in the literature that does
not predict a repulsive ND interaction and, in addition, it foresees the formation of a ND bound state with
a mass of 2804 MeV/c2 in the I= 0 channel. For the model by Haidenbauer et al., a better agreement with
the data can be achieved by fine-tuning the effective scalar coupling constant gσ [21]. As demonstrated
in Table 1, when increasing the coupling constant to g2

σ/4π = 2.25 the overall degree of consistency with
the data is improved. This also implies a change of the interaction, from repulsive to attractive.

Finally, the scattering parameters can be constrained by comparing the data with the outcome of calcu-
lations carried out varying the strength of the potential and the source radius. In this case the interaction
potential is parametrized by a Gaussian-type functional form with the range of ρ-meson exchange. In
this estimation, it is assumed that the interaction in the I = 1 channel is negligible for simplicity. The
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Figure 3: Regions of 68% confidence intervals for the inverse scattering length f−1
0, I=0 as a function of the source

radius varied within one standard deviation considering only the mT dependence on Reff and the total uncertainty
(see text for details) under the assumption of negligible interaction for I = 1. The most probable value is reported
by the star symbol.
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 interaction and  correlation function D̄N D−p

•  correlation function D−p

• pure Coulomb case is compatible with data

• Better agreement with strongly attractive  
   interaction models for . 
• pion exchange model of Yamaguchi et al.  
  predicting 2 MeV bound state gives the lowest 

I = 0

nσ
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Constraint on  scattering length I = 0 f0 f0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 

 interaction and  correlation function D̄N D−p

V(r) = V0 exp(−m2r2)
•   <—  exchange m ρ (m = mρ)

• Assume negligible  int. I = 1

• Analysis with one range Gaussian potential

• Constraint on  f0, I=0

• 1  constraint —>  :

• strongly attractive with or without bound state

* Most models predicts repulsive int. for  
    —>   may have more attraction in reality.

σ f −1
0, I=0 ∈ [−0.4,0.9] fm−1

I = 1
I = 0

First study of the two-body scattering involving charm hadrons ALICE Collaboration

Table 1: Scattering parameters of the different theoretical models for the ND interaction [21–24] and degree of
consistency with the experimental data. Negative scattering parameters correspond to either a repulsive interaction
or to an attractive interaction with the presence of a bound state [24]. Positive scattering parameters correspond to
an attractive interaction.
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models. The data are compatible with the Coulomb-only hypothesis within (1.1–1.5)σ . Nevertheless,
the level of agreement slightly improves in case of the model by Yamaguchi et al. as reported in Table 1,
where the nσ values are summarized together with the scattering lengths f0. Here, the high-energy
physics convention on the scattering-length sign is adopted: a negative value corresponds to either
a repulsive interaction or to an attractive one with presence of a bound state, while a positive value
corresponds to an attractive interaction. Most notably, this is the only model in the literature that does
not predict a repulsive ND interaction and, in addition, it foresees the formation of a ND bound state with
a mass of 2804 MeV/c2 in the I= 0 channel. For the model by Haidenbauer et al., a better agreement with
the data can be achieved by fine-tuning the effective scalar coupling constant gσ [21]. As demonstrated
in Table 1, when increasing the coupling constant to g2

σ/4π = 2.25 the overall degree of consistency with
the data is improved. This also implies a change of the interaction, from repulsive to attractive.

Finally, the scattering parameters can be constrained by comparing the data with the outcome of calcu-
lations carried out varying the strength of the potential and the source radius. In this case the interaction
potential is parametrized by a Gaussian-type functional form with the range of ρ-meson exchange. In
this estimation, it is assumed that the interaction in the I = 1 channel is negligible for simplicity. The
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X(3872)Tcc
• Observed in  spectrumD0D0π
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Figure 1: Distribution of D0D0⇡+ mass. Distribution of D0D0⇡+ mass where the contribu-
tion of the non-D0 background has been statistically subtracted. The result of the fit described
in the text is overlaid.

The function is built under two assumptions. Firstly, that the newly observed state has
quantum numbers JP = 1+ and isospin I = 0 in accordance with the theoretical expecta-
tion for the T+

cc ground state. Secondly, that the T+
cc state is strongly coupled to the D⇤D

channel. The derivation of FU relies on the isospin symmetry for T+
cc! D⇤D decays

and explicitly accounts for the energy dependency of the T+
cc! D0D0⇡+, T+

cc! D0D+⇡0

and T+
cc! D0D+� decay widths as required by unitarity. Similarly to the FBW profile,

the FU function has two parameters: the peak locationmU, defined as the mass value where
the real part of the complex amplitude vanishes, and the absolute value of the coupling
constant g for the T+

cc! D⇤D decay.
The detector mass resolution, R, is modelled with the sum of two Gaussian functions

with a common mean, and parameters taken from simulation, see Methods. The widths
of the Gaussian functions are corrected by a factor of 1.05, that accounts for a small
residual di↵erence between simulation and data [39,104,105]. The root mean square of
the resolution function is around 400 keV/c2.

A study of the D0⇡+ mass distribution for selected D0D0⇡+ combinations in the region
above the D⇤0D+ mass threshold and below 3.9GeV/c2 shows that approximately 90% of all

3

or χc1

TABLE I: Resolution values from the fits to the ψ′ signal region. The errors are statistical only.

Quantity Fitted value

σMbc
2.6± 0.1 MeV

σ∆E(core) 11.6 ± 0.4 MeV

σ∆E(tail) 130± 130 MeV

Core fraction 0.965 ± 0.015
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FIG. 2: Signal-band projections of (a) Mbc, (b) Mπ+π−J/ψ and (c) ∆E for the X(3872) →
π+π−J/ψ signal region with the results of the unbinned fit superimposed.

We determine the mass of the signal peak relative to the well measured ψ′ mass:

MX = Mmeas
X −Mmeas

ψ′ +MPDG
ψ′ = 3872.0± 0.6± 0.5 MeV.

Here the first error is statistical and the second systematic. Since we use the precisely known
value of the ψ′ mass [9] as a reference, the systematic error is small. The Mψ′ measurement,
which is referenced to the J/ψ mass that is 589 MeV away, is −0.5±0.2 MeV from its world-
average value [13]. Variation of the mass scale from Mψ′ to MX requires an extrapolation
of only 186 MeV and, thus, can safely be expected to be less than this amount. We assign
0.5 MeV as the systematic error on the mass.

The measured width of the X(3872) peak is σ = 2.5 ± 0.5 MeV, which is consistent
with the MC-determined resolution and the value obtained from the fit to the ψ′ signal.
To determine an upper limit on the total width, we repeated the fits using a resolution-

TABLE II: Results of the fits to the ψ′ and M = 3872 MeV regions. The errors are statistical only.

Quantity ψ′ region M = 3872 MeV region

Signal events 489± 23 35.7 ± 6.8

Mmeas
π+π−J/ψ peak 3685.5 ± 0.2 MeV 3871.5 ± 0.6 MeV

σMπ+π−J/ψ 3.3 ± 0.2 MeV 2.5 ± 0.5 MeV

6

• Firstly observed in  spectrumππJ/Ψ
Belle, PRL 91, 262001 (2003) 

• Confirmed by Babar: PRD71, 071003 (2003)   
                        CDF: PRL 93 072001 (2004) 
                        D0: PRL 93 162002 (2004)

Belle, PRL 91, 262001 (2003) 

LHCb, Nature Com. 13 (2022) 1

 and  int. from femtoscopyDD* DD̄*
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 and  sector DD* DD̄*
C = 2 C = 0

V(r) = V0 exp(−m2r2)
•   <—  exchange m π (m = mπ)
•  <— scattering lengthsV0

• Gaussian potential 

• /  lies nearby /  Tcc X(3872) DD* DD̄*
==> meson-meson molecule?

D0D̄*0En
er

gy

DD̄π

D*D̄*

D+D*−

X(3872)

ππJ/Ψ

En
er

gy

D+D*0

D0D*+

D*D*

Tcc

DDπ

• Assume dominant contribution from exotic channel (I = 0)
• Coupled-channel of two isospin channels

DD∗ correlation function and Tcc state

November 16, 2021

1 Related hadrons and channels

Recently, the signal of so called Tcc state is found in the D0D0π+ spectrum [1, 2]. In Ref. [1], the pole
mass is given as

ETcc = δm− i

2
Γ, (1)

δm = −360 keV,Γ = 48 keV, (2)

where ETcc is measured from D0D∗+ threshold Eth, D0D∗+ . The scattering length is given by

a0 = −7.16 + i1.85 fm, (3)

which is defined as a0 = F(E = Eth, D0D∗+) with D0D∗+ amplitude F .
To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = m+

π because the π+ exchange interaction exists for these channels.

2 Coupled-channel potential

We consider the coupled-channel potential of D+D∗0 and D0D∗+. The relation between the isospin basis
and charge basis is give as

|DD∗(I = 0)〉 = 1√
2

(
|D+D∗0〉 − |D0D∗+〉

)
, (5)

|DD∗(I = 1)〉 = 1√
2

(
|D+D∗0〉+ |D0D∗+〉

)
. (6)

With the I = 0 and I = 1 potential, the coupled-channel potential forD0D∗+ (channel 1) andD+D∗0(C =
+) (channel 2) are given as

VDD∗(r) =
1

2

(
VI=1(r) + VI=0(r) VI=1(r)− VI=0(r)
VI=1(r)− VI=0(r) VI=1(r) + VI=0(r)

)
(7)

Assuming that the I = 0 gives the dominant contribution we set

VI=0 =V (r), (8)

VI=1 =0. (9)

Now we determine the potential strength V0 by fitting the scattering length of aD
0D∗+

0 where the result
is shown in Table 1. We find that the real parts of the scattering length of both channels are negative in
this calculation.

1

LHCb, Nature Com. 13 (2022) 1

ETcc
= δm −

i
2

Γ

DD̄∗ correlation function

November 29, 2021

1 Related hadrons and channels

The spin-parity of X(3872) state is given as JPC = 1++ and it has isospin I = 0 [1]. The X(3872)
couples to DD̄∗ and D∗D̄∗ channels in s-wave. According to the PDG, X(3872) locates around the
D0D̄∗0 and D0D̄∗0 threshold energy. Considering that this state has C = +, the X(3872) state couples
to the following combination of DD̄∗ and D∗D̄ states.

1√
2

[
D0D̄∗0 +D∗0D̄0

]
, (1)

1√
2

[
D+D∗− +D∗+D̄−] . (2)

In this note, for simplicity, sometimes these combinations are labeled byD0D̄∗0(C = +) andD+D̄∗−(C =
+), respectively.

According to the PDG [1], the pole energy of the X(3872) is Epole = 3871.65 − i0.60 MeV. The
difference between its energy and the D0D̄∗0 threshold Eth is Eh = Epole − Eth = −0.04− i0.60 MeV.

aD
0D̄∗0,C=+

0 = −4.23 + i3.95fm. (3)

While the X(3872) couples to the I = 0 C = + channel of DD̄∗ channels, the interaction of other
channels also affect the correlation function. However, in this study we assume that, in the low-energy
region of the DD̄∗, I = 0 C = + channel gives the dominant contribution to the correlation function and
we switch off the other interaction (V = 0).1

To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = mπ because the pion exchange interaction exists for these channels.

2 Coupled-channel potential

Now we discuss the coupled-channel potential for JPC = 1++ DD̄∗ channels. The DD̄∗ and D∗D̄ states
are decomposed as

|DD̄∗, I = 0, C = ±〉 = 1√
2

[
|D+D∗−〉 − |D0D̄∗0〉

]
(5)

± 1√
2

[
|D∗+D−〉 − |D∗0D̄0〉

]
(6)

|DD̄∗, I = 1, C = ±〉 = 1√
2

[
|D+D∗−〉+ |D0D̄∗0〉

]
(7)

± 1√
2

[
|D∗+D−〉+ |D∗0D̄0〉

]
(8)

1Note that Zc(3900) with JPC = 1+− can also couple to DD̄∗ state. Thus the we may see its effect on the correlation
function.

1
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1

PDG, PTEP 2020, 083C01 (2020). 

EX(3872) = δm −
i
2

Γ

δm = − 0.04 MeV

Γ = 1.19 MeV

Γ = 0.048 MeV

δm = − 0.36 MeV

 and  int. from femtoscopyDD* DD̄*
a0 ≡ ℱ(E = Eth)
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 correlation and  state DD* Tcc

D+D*0

D0D*+

Tcc D0D*+ D+D*0

D+D*0 threshold

• Bound state like behavior for both pairs 

• Stronger source size dep. for  

•  cusp is not prominent

D0D*+

D+D*0

1.41 MeV
0.36 MeV

DD∗ correlation function and Tcc state

November 16, 2021

1 Related hadrons and channels

Recently, the signal of so called Tcc state is found in the D0D0π+ spectrum [1, 2]. In Ref. [1], the pole
mass is given as

ETcc = δm− i

2
Γ, (1)

δm = −360 keV,Γ = 48 keV, (2)

where ETcc is measured from D0D∗+ threshold Eth, D0D∗+ . The scattering length is given by

a0 = −7.16 + i1.85 fm, (3)

which is defined as a0 = F(E = Eth, D0D∗+) with D0D∗+ amplitude F .
To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = m+

π because the π+ exchange interaction exists for these channels.

2 Coupled-channel potential

We consider the coupled-channel potential of D+D∗0 and D0D∗+. The relation between the isospin basis
and charge basis is give as

|DD∗(I = 0)〉 = 1√
2

(
|D+D∗0〉 − |D0D∗+〉

)
, (5)

|DD∗(I = 1)〉 = 1√
2

(
|D+D∗0〉+ |D0D∗+〉

)
. (6)

With the I = 0 and I = 1 potential, the coupled-channel potential forD0D∗+ (channel 1) andD+D∗0(C =
+) (channel 2) are given as

VDD∗(r) =
1

2

(
VI=1(r) + VI=0(r) VI=1(r)− VI=0(r)
VI=1(r)− VI=0(r) VI=1(r) + VI=0(r)

)
(7)

Assuming that the I = 0 gives the dominant contribution we set

VI=0 =V (r), (8)

VI=1 =0. (9)

Now we determine the potential strength V0 by fitting the scattering length of aD
0D∗+

0 where the result
is shown in Table 1. We find that the real parts of the scattering length of both channels are negative in
this calculation.

1
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 correlation and  stateDD̄* X(3872)

D0D̄*0

D+D*−

X(3872) D0D̄*0

D+D*− threshold

8.23 MeV

0.03 MeV

•  : Strong source size dep. 

•  : Small effect of the strong int. (Coulomb int dominance) 

• Moderate  cusp

D0D*+

D+D*−

D+D*+

PDG, PTEP 2020, 083C01 (2020)

EX(3872) = δm −
i
2

Γ

δm = − 0.04 MeV
Γ = 1.19 MeV

DD̄∗ correlation function

November 29, 2021

1 Related hadrons and channels

The spin-parity of X(3872) state is given as JPC = 1++ and it has isospin I = 0 [1]. The X(3872)
couples to DD̄∗ and D∗D̄∗ channels in s-wave. According to the PDG, X(3872) locates around the
D0D̄∗0 and D0D̄∗0 threshold energy. Considering that this state has C = +, the X(3872) state couples
to the following combination of DD̄∗ and D∗D̄ states.

1√
2

[
D0D̄∗0 +D∗0D̄0

]
, (1)

1√
2

[
D+D∗− +D∗+D̄−] . (2)

In this note, for simplicity, sometimes these combinations are labeled byD0D̄∗0(C = +) andD+D̄∗−(C =
+), respectively.

According to the PDG [1], the pole energy of the X(3872) is Epole = 3871.65 − i0.60 MeV. The
difference between its energy and the D0D̄∗0 threshold Eth is Eh = Epole − Eth = −0.04− i0.60 MeV.

aD
0D̄∗0,C=+

0 = −4.23 + i3.95fm. (3)

While the X(3872) couples to the I = 0 C = + channel of DD̄∗ channels, the interaction of other
channels also affect the correlation function. However, in this study we assume that, in the low-energy
region of the DD̄∗, I = 0 C = + channel gives the dominant contribution to the correlation function and
we switch off the other interaction (V = 0).1

To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = mπ because the pion exchange interaction exists for these channels.

2 Coupled-channel potential

Now we discuss the coupled-channel potential for JPC = 1++ DD̄∗ channels. The DD̄∗ and D∗D̄ states
are decomposed as

|DD̄∗, I = 0, C = ±〉 = 1√
2

[
|D+D∗−〉 − |D0D̄∗0〉

]
(5)

± 1√
2

[
|D∗+D−〉 − |D∗0D̄0〉

]
(6)

|DD̄∗, I = 1, C = ±〉 = 1√
2

[
|D+D∗−〉+ |D0D̄∗0〉

]
(7)

± 1√
2

[
|D∗+D−〉+ |D∗0D̄0〉

]
(8)

1Note that Zc(3900) with JPC = 1+− can also couple to DD̄∗ state. Thus the we may see its effect on the correlation
function.

1
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 and  int. from femtoscopyDD* DD̄*

Letter of intent for ALICE 3 (CERN-LHCC-2022-009) 91

D0p+ and D0 ! K�p+, having branching ratios (66.7± 0.5)% and (3.951± 0.031)% [226],
respectively. D0 mesons coming from D⇤+ decays were rejected by off-line selections on the de-
cay topology. The reconstruction and selection efficiencies, as well as the signal-to-background
ratios, were evaluated using the Fast Simulation tool described in Sec. 3.1. For each selected
pair of D⇤+ and D0 mesons, the relative momentum k⇤ = |p⇤

2 �p⇤
1|/2 in the pair rest frame was

computed. The total number of D0D⇤+ pairs as a function of k⇤ was calculated by scaling the
number obtained from the PYTHIA 8 simulation in order to match the expected integrated lumi-
nosity of Lint = 18fb−1 and to reproduce the predicted CD0D⇤+ for an emitting-source radius of
1 fm. The number of D0D⇤+ pairs in the 10% most central Pb–Pb collisions at

p
sNN = 5.5 TeV

was obtained analogously for the expected integrated luminosity of Lint = 35nb−1, considering
in addition that the D mesons produced in each Pb–Pb event scale with the number of binary
nucleon–nucleon collisions (Ncoll) compared to the corresponding number in pp collisions. In
this case, the expected CD0D⇤+ for an emitting-source radius of 5 fm was considered. The right
panel of Fig. 43 shows the expected statistical precision for the CD0D⇤+ measurement with the
ALICE3 detector. In particular, in case of bound state formation, the expected statistical uncer-
tainties will allow for a significant measurement of a CD0D⇤+ lower than unity in Pb–Pb collisions
and higher than unity in pp collisions. Hence, this would give the possibility to shed light on the
molecular or tetraquark nature of the T+

cc state. In the same way, a systematic scan of light-to-
heavy colliding systems will allow for a crucial test of the hadronic molecule hypothesis for the
candidates listed in Table 5.

3.3.1.7 D0(+)D⇤0(�) momentum correlations
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Figure 44: D0D⇤0 and D+D⇤� correlation function predictions and projections for the ALICE3
detector shown in the left and right panels. Different colours refer to different system radii. The total
luminosity considered for pp and Pb-Pb collisions is indicated in the legend.

Also the nature of the cc1(3872) state is subject of a longstanding discussion as far as its molec-
ular nature is concerned. The cc1(3872) state (JPC = 1++ and I = 0) couples to the DD⇤ and
D⇤D⇤, in particular its mass is located below the D0D⇤0 pairs (�40 keV) and D+D⇤� (�8.27

ALICE collab., CERN-LHCC-2022-009 (2022).
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a0 ≡ ℱ(E = Eth)
+ : attractive w/o bound  
- : repulsive  
    or attractive w/ bound 

 as cusp X(3872)
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Fig. 3 The D0 D̄∗0 correlation functions calculated with the weak-
ened interaction V0 = −32.000 − i6.057 MeV (thick line) where the
quasibound state does not appear. The scattering length is obtained as

a{D
0 D̄∗0}

0 = 2.30 + i4.00 fm

Due to the large absolute value of the a{D
0 D̄∗0}

0 , CD0 D̄∗0 from
the small source shows the strong enhancement, which is sim-
ilar to the quasibound case. However, CD0 D̄∗0 from the large
source does not show the clear dip structure unlike Fig. 2.
Thus, even though the pole is originated in the D-D̄∗ inter-
action, the D0 D̄∗0 correlation function shows the different
source size dependence depending on the pole position of
X (3872). On the other hand, D+D∗− pair shows the same
behavior with Fig. 2 due to the small a{D

+D∗−}
0 , so we omit the

result of CD+D∗− .
In this study, we used the empirically determined scat-

tering lengths as input to calculate the correlation functions.
Given the correlation data obtained from the precise future
measurement, we can independently determine the scatter-
ing lengths a0 because the correlation functions are sensitive
to the low-energy interaction. According to the Weinberg’s
weak-binding relation [13–15], the compositeness, which is
defined as the probability of finding molecular state in the
eigenstate, is directly related to the ratio of the a0/Rh where
Rh is the length scale determined with the eigenenergy Eh as
Rh = 1/

√−2µEh . Thus, combined with the information of
the pole position, to measure the these correlation functions
leads to understand the nature of Tcc and X (3872) states.

4 Summary

We have studied the correlation functions of the DD∗ and
DD̄∗ pairs for the purpose of the investigation of the Tcc and

X (3872) exotic states. With the assumption of the molecular
nature of these states, one-range Gaussian potentials are con-
structed for the DD∗ and DD̄∗ channels from the empirical
data, the scattering length given in the experimental analysis
[7] for DD∗ and the eigenenergy of X (3872) [4] for DD̄∗.
Due to the large scattering lengths, the calculated correla-
tion functions in the lower channels (D0D∗+ and D0 D̄∗0),
which are closer to the exotic states, show the characteristic
behavior of the bound state below the threshold. On the other
hand, the correlation function of the D+D∗0 channel shows
less prominent behavior due to the energy difference from
the Tcc pole, and the correlation in the D+D∗− channel is
mainly caused by the Coulomb interaction. To extract these
characteristic behaviors, the high resolution data given by
the statistical events from the different collisions systems is
required. According to Refs. [39,40], the ALICE 3 upgrade
with the large acceptance and the high luminosity provides
us the great resolution for the DD∗ and DD̄∗ correlation
data from both different colliding systems (pp and PbPb),
which is enough to see the characteristic behavior. Given the
successful measurement of the D− p correlation function by
the ALICE collaboration [37], we expect that the measure-
ments of the DD∗ and DD̄∗ correlations in future will bring
new insights of the exotic hadrons from the viewpoint of the
femtoscopy.

In this study, we have introduced the potentials in the chan-
nels that couple to the exotic states (isospin I = 0 and charge
conjugation C = +), and have neglected the interactions in
the other channels. This is because the existence of near-
threshold states implies the strong interaction, which is con-
sidered to give the dominant contribution for the correlation
function. For more quantitative discussion of the correlation
functions, these subleading effects should also be consid-
ered. In particular, the cusp structure may be sensitive to the
isospin I = 1 interaction, because the coupling between the
isospin partners are given by the difference of the two isospin
components. The DD̄∗ interaction in theC = − sector is still
unclear at this moment, but the neutral partner of Zc(3900)
[41] may play an important role in this channel. These effect
should be discussed in the future studies.
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Fig. 1 The correlation functions of the D0D∗+ (top) and D+D∗0 (bot-
tom) pair with the source size R = 1, 2, 3, and 5 fm

[23]. On the other hand, due to the attractive Coulomb
force, the CD+D∗− correlations show a strong enhancement
at small q. To extract the contribution by the strong inter-
action, we show the difference from the pure Coulomb case
!C = CD+D∗− − Cpure Coul.. We can see that the effect
of the strong interaction emerges mainly as the suppression
compared to the pure Coulomb case. However, the devia-
tion |!C | is less than 0.2 for the momentum region q > 50
MeV/c. Thus, the correlation of D+D∗− pair is expected to
be dominated by the Coulomb contribution.

Fig. 2 The correlation functions of the D0 D̄∗0 (top) and D+D∗− (bot-
tom) pair with the source size R = 1, 2, 3, and 5 fm. For D+D∗− pair,
the difference from the pure Coulomb case !C is shown in sub figure

Up to here, we have assumed that X (3872) is the quasi-
bound state below the DD̄∗ threshold. Another possibility is
that the X (3872) pole emerges above the threshold energy
in the unphysical Riemann sheet. In this case, the real part

of a{D
0 D̄∗0}

0 is positive. We find that when we weaken the
real part of the V0 and take V0 = −32.000 − i6.057 MeV,

a{D
0 D̄∗0}

0 = 2.30 + i4.00 fm and a{D
+D∗−}

0 = 0.19 + i1.47
fm. We performed the calculation in the same manner and
obtained the D0 D̄∗0 correlation function with the weakened
potential as shown in Fig. 3. We see that the correlation func-
tion shows the source size dependence different from Fig. 2.
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1 Related hadrons and channels

The spin-parity of X(3872) state is given as JPC = 1++ and it has isospin I = 0 [1]. The X(3872)
couples to DD̄∗ and D∗D̄∗ channels in s-wave. According to the PDG, X(3872) locates around the
D0D̄∗0 and D0D̄∗0 threshold energy. Considering that this state has C = +, the X(3872) state couples
to the following combination of DD̄∗ and D∗D̄ states.

1√
2

[
D0D̄∗0 +D∗0D̄0

]
, (1)

1√
2

[
D+D∗− +D∗+D̄−] . (2)

In this note, for simplicity, sometimes these combinations are labeled byD0D̄∗0(C = +) andD+D̄∗−(C =
+), respectively.

According to the PDG [1], the pole energy of the X(3872) is Epole = 3871.65 − i0.60 MeV. The
difference between its energy and the D0D̄∗0 threshold Eth is Eh = Epole − Eth = −0.04− i0.60 MeV.

aD
0D̄∗0,C=+

0 = −4.23 + i3.95fm. (3)

While the X(3872) couples to the I = 0 C = + channel of DD̄∗ channels, the interaction of other
channels also affect the correlation function. However, in this study we assume that, in the low-energy
region of the DD̄∗, I = 0 C = + channel gives the dominant contribution to the correlation function and
we switch off the other interaction (V = 0).1

To analyze this channel we use Gaussian potential given as

V (r) = V0 exp(−m2r2), (4)

where V0 is the strength and m is the parameter to control the range of the Gaussian. Here we fix the
range parameter m as m = mπ because the pion exchange interaction exists for these channels.

2 Coupled-channel potential

Now we discuss the coupled-channel potential for JPC = 1++ DD̄∗ channels. The DD̄∗ and D∗D̄ states
are decomposed as

|DD̄∗, I = 0, C = ±〉 = 1√
2

[
|D+D∗−〉 − |D0D̄∗0〉

]
(5)

± 1√
2

[
|D∗+D−〉 − |D∗0D̄0〉

]
(6)

|DD̄∗, I = 1, C = ±〉 = 1√
2

[
|D+D∗−〉+ |D0D̄∗0〉

]
(7)

± 1√
2

[
|D∗+D−〉+ |D∗0D̄0〉

]
(8)

1Note that Zc(3900) with JPC = 1+− can also couple to DD̄∗ state. Thus the we may see its effect on the correlation
function.
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Fig. 1 The correlation functions of the D0D∗+ (top) and D+D∗0 (bot-
tom) pair with the source size R = 1, 2, 3, and 5 fm

[23]. On the other hand, due to the attractive Coulomb
force, the CD+D∗− correlations show a strong enhancement
at small q. To extract the contribution by the strong inter-
action, we show the difference from the pure Coulomb case
!C = CD+D∗− − Cpure Coul.. We can see that the effect
of the strong interaction emerges mainly as the suppression
compared to the pure Coulomb case. However, the devia-
tion |!C | is less than 0.2 for the momentum region q > 50
MeV/c. Thus, the correlation of D+D∗− pair is expected to
be dominated by the Coulomb contribution.

Fig. 2 The correlation functions of the D0 D̄∗0 (top) and D+D∗− (bot-
tom) pair with the source size R = 1, 2, 3, and 5 fm. For D+D∗− pair,
the difference from the pure Coulomb case !C is shown in sub figure

Up to here, we have assumed that X (3872) is the quasi-
bound state below the DD̄∗ threshold. Another possibility is
that the X (3872) pole emerges above the threshold energy
in the unphysical Riemann sheet. In this case, the real part

of a{D
0 D̄∗0}

0 is positive. We find that when we weaken the
real part of the V0 and take V0 = −32.000 − i6.057 MeV,

a{D
0 D̄∗0}

0 = 2.30 + i4.00 fm and a{D
+D∗−}

0 = 0.19 + i1.47
fm. We performed the calculation in the same manner and
obtained the D0 D̄∗0 correlation function with the weakened
potential as shown in Fig. 3. We see that the correlation func-
tion shows the source size dependence different from Fig. 2.
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Summary

Femtoscopic correlation function in high energy nuclear collisions is a 
powerful tool to investigate the nature of bound state. 

 
Non-interacting model can explain data but strong attractive interaction 
reduce the standard deviation. 

/  
The lower isospin partner channels are expected to show the strong source 
size dependence due to the near threshold /  states.

D−p

DD* DD̄*

Tcc X(3872)
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