

Yuki Kamiya HISKP, Bonn Univ.

Hadron-hadron interactions from femtoscopic study

	Baryons 20 Structure of @ Sevilla,

Baryons 2022 - International Conference on the Structure of Baryons @ Sevilla, Spain 2022/11/7

High energy nuclear collision and FSI

Hadron-hadron correlation

$$C_{12}(k_1, k_2) = \frac{N_{12}(k_1, k_2)}{N_1(k_1)N_2(k_2)}$$

=
$$\begin{cases} 1 & (\text{w/o correlation}) \\ \text{Others (w/ correlation)} \end{cases}$$

High energy nuclear collision and FSI

Hadron-hadron correlation

• Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990) $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \ S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r}) \quad : \text{Source function}$

 $\varphi^{(-)}(\mathbf{q},\mathbf{r})$: Relative wave function

High energy nuclear collision and FSI

• High energy nuclear collision and FSI A_2 Final State Interaction (FSI)

Hadronization

Hadron-hadron correlation

A

- Koonin-Pratt formula : $\underset{S.E. \text{ Koonin, PLB 70 (1977)}}{\text{S. Pratt et. al. PRC 42 (1990)}}$ $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r})$: Source function $\varphi^{(-)}(\mathbf{q}, \mathbf{r})$: Relative wave function
- Depends on ...

Interaction (strong and Coulomb)

mmm

quantum statistics (Fermion, boson)

- Analytic model for ideal cases $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \, S(\mathbf{r}) |\varphi^{(-)}(\mathbf{q}, \mathbf{r})|^2$
- Gaussian source with radius *R*
- Approximate φ by asymptotic wave func.
- $\mathcal{F}(q) = [-1/a_0 iq]^{-1}$ with scat. length a_0 R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

 $C = C(qR, \frac{R}{a_0})$

• C(q) is sensitive to R/a_0 at $qR \leq 1$

Sgn(a ₀)	Interaction	
_	Attraction w/o bound state	
+	Attraction w/ bound state	
	or	
	Repulsion	

- Clear relation between C(q) and $\mathcal{F}(q)$
- Sensitive to (non)existence of bound state

$N\Omega$ dibaryon and $p\Omega$ correlation

100

• $N\Omega$ dibaryon state (J = 2) is predicted by the Lattice HAL QCD potential

ALICE, Nature 588, 232(2020)

Fabbietti, et.al. [2012.09806]

Adam et. al.PLB 790 (2019)
Dip structure only in the large source data

0.2

(b)

Strong suppression

 $=> p\Omega$ dibaryon state?

0.1

18

16

14

12

10

8

6

2

0 _2

0.5

• Consistent with HALQCD potential CF model Morita, et al., PRC101 (2020)

 f_0^{-1} (fm⁻¹)

$\Lambda\Lambda$ -NE correlation function and H dibaryon

$\overline{D}N$ interaction and D^-p correlation function

- • $\overline{D}(\overline{c}l)N$ interaction (C = -1)
- D^-p correlation function ALICE PRD 106 (2022) 5, 052010

* Background including miss PID is subtracted

- $f_0 \equiv \mathscr{F}(E = E_{\rm th})$
- + : attractive w/o bound
- : repulsive

or attractive w/ bound

• Model scattering lengths f_0

Model	$f_0 (I = 0)$	$f_0 (I = 1)$	n_{σ}
Coulomb			(1.1–1.5)
Haidenbauer et al. [21]			
$-g_{\sigma}^2/4\pi = 1$	0.14	-0.28	(1.2-1.5)
$-g_{\sigma}^{2}/4\pi = 2.25$	0.67	0.04	(0.8–1.3)
Hofmann and Lutz [22]	-0.16	-0.26	(1.3 - 1.6)
Yamaguchi et al. [24]	-4.38	-0.07	(0.6-1.1)
Fontoura et al. [23]	0.16	-0.25	(1.1 - 1.5)

- pure Coulomb case is compatible with data
- Better agreement with strongly attractive interaction models for I = 0.
- pion exchange model of Yamaguchi et al. predicting 2 MeV bound state gives the lowest n_{σ}

$\overline{D}N$ interaction and D^-p correlation function

ALICE PRD 106 (2022) 5, 052010

• Constraint on I = 0 scattering length f_0

• Analysis with one range Gaussian potential

 $V(r) = V_0 \exp(-m^2 r^2)$

- $m < -\rho$ exchange ($m = m_{\rho}$)
- Assume negligible I = 1 int.

- $f_0 \equiv \mathscr{F}(E = E_{\rm th})$
- + : attractive w/o bound
- : repulsive

or attractive w/ bound

• Constraint on $f_{0, I=0}$

- 1σ constraint $\rightarrow f_{0, I=0}^{-1} \in [-0.4, 0.9]$ fm⁻¹:
- strongly attractive with or without bound state
- * Most models predicts repulsive int. for I = 1-> I = 0 may have more attraction in reality.

- T_{cc}
- Observed in $D^0 D^0 \pi$ spectrum

LHCb, Nature Com. 13 (2022) 1

- X(3872) or χ_{c1} Firstly observed in $\pi\pi J/\Psi$ spectrum
 - Firstly observed in $\pi\pi J/\Psi$ spectrum Belle, PRL 91, 262001 (2003)
 - Confirmed by Babar: PRD71, 071003 (2003)
 CDF: PRL 93 072001 (2004)
 D0: PRL 93 162002 (2004)

• $T_{cc}/X(3872)$ lies nearby $DD^*/D\bar{D}^*$

 $V(r) = V_0 \exp(-m^2 r^2)$

==> meson-meson molecule?

==>Strong attractive interaction

• Gaussian potential

• $m < -\pi$ exchange $(m = m_{\pi})$

- V_0 <- scattering lengths
- Assume dominant contribution from exotic channel (I = 0)
- Coupled-channel of two isospin channels

- Bound state like behavior for both pairs
- Stronger source size dep. for $D^0 D^{*+}$
- D^+D^{*0} cusp is not prominent

- $D^0 D^{*+}$: Strong source size dep.
- D^+D^{*-} : Small effect of the strong int. (Coulomb int dominance)
- Moderate D^+D^{*+} cusp

- D^0D^{*+} : Strong source size dep.
- D^+D^{*-} : Small effect of the strong int. (Coulomb int dominance)
- Moderate D^+D^{*+} cusp

X(3872) with various assumptions

• Femtoscopic correlation function in high energy nuclear collisions is a powerful tool to investigate the nature of bound state.

D⁻p
 Non-interacting model can explain data but strong attractive interaction reduce the standard deviation.

• $DD^*/D\bar{D}^*$

The lower isospin partner channels are expected to show the strong source size dependence due to the near threshold $T_{cc}/X(3872)$ states.

Thank you for your attention!