s The spectral fun 00000

UNIVERSITÄT

Fakultät für Physik

Lattice correlator

Spectral reconstruction (Full G

Outlook

Study of quarkonium in QGP from unquenched lattice QCD

Sajid Ali

Faculty of Physics, Bielefeld University

L. Altenkort, D. Bala, O. Kaczmarek, H-T. Shu, T. Ueding HOTQCD collaboration

Baryons 2022, 08.11.2022

Correlators and SPFs

The spectral function

Lattice correlators

Spectral reconstruction (Full QCD)

Outlook

Correlators and SPFs The spectral function Lattice correlators Spectral reconstruction (Full QCD)

- Heavy $q\bar{q}$: a thermometer of QGP in heavy ion collisions
- The spectral functions ρ_H(ω) contains information about the in-medium hadron properties

$$\sum_{\vec{x}} \left\langle \bar{\psi} \Gamma_H \psi(\tau, \vec{x}) (\bar{\psi} \Gamma_H \psi(0, \vec{0}))^{\dagger} \right\rangle \equiv \frac{G_H(\tau)}{G_H(\tau)} = \int_0^\infty \frac{\omega}{\pi} \rho_H(\omega) \frac{\cosh(\omega(\tau - \frac{1}{2\tau}))}{\sinh(\frac{\omega}{2\tau})}$$

Correlators and SPFs The spectral function Lattice correlators Spectral reconstruction (Full QCD)

- Heavy $q\bar{q}$: a thermometer of QGP in heavy ion collisions
- The spectral functions $\rho_H(\omega)$ contains information about the in-medium hadron properties

$$\sum_{\vec{x}} \left\langle \bar{\psi} \Gamma_H \psi(\tau, \vec{x}) (\bar{\psi} \Gamma_H \psi(0, \vec{0}))^{\dagger} \right\rangle \equiv G_H(\tau) = \int_0^\infty \frac{\omega}{\pi} \rho_H(\omega) \frac{\cosh(\omega(\tau - \frac{1}{2\tau}))}{\sinh(\frac{\omega}{2\tau})}$$

Strategy:

- $G_H(\tau)$ on the lattice
- Extract spectral function
- Estimate in-medium hadronic properties
- In addition transport coefficients, like heavy quark diffusion coefficients, are encoded in the vector meson spectral function

Lattice correla

Spectral reconstruction (Full QCD)

Outlook

The spectral function

Ref. [H. Sandmeyer's thesis]

<ロ > < 団 > < 豆 > < 豆 > < 豆 > ラ < 4/13

Lattice correla

Spectral reconstruction (Full G

) Outlook

The spectral function

• At infinite temperature there cannot be bound states

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ @ 4/13

Ref. [H. Sandmeyer's thesis]

Outline Correlators and SPFs

The spectral function

Lattice correla

Spectral reconstruction (Full G

Outlook

The spectral function

- At infinite temperature there cannot be bound states
- Melting of states visualizes in shrinking and broadening of bound peaks

4 ロ ト 4 母 ト 4 ヨ ト 4 ヨ ト ヨ の 9 9 4/13

Ref. [H. Sandmeyer's thesis]

Outline Correlators and SPFs

The spectral function

Lattice correla

ors Spectral reconstructi

onstruction (Full QCD) 0

The spectral function

- At infinite temperature there cannot be bound states
- Melting of states visualizes in shrinking and broadening of bound peaks

4 ロ ト 4 母 ト 4 ヨ ト 4 ヨ ト ヨ の 9 9 4/13

Ref. [H. Sandmeyer's thesis]

The spectral function

- At infinite temperature there cannot be bound states
- Melting of states visualizes in shrinking and broadening of bound peaks
- Heavy quark diffusion constant can be read off in vector channel

$$D = \frac{\pi}{3\chi_q} \lim_{\omega \to 0} \sum_{i=1}^3 \frac{\rho_V(\omega, T)}{\omega}$$

Extraction of spectral function is ill-posed problem \rightarrow large lattices needed. Ref. [H. Sandmeyer's thesis]

Lattice correlat

pectral reconstruction (Full QCI

Outlook

SPF's contribution to correlators

Figure: Visualization of which parts of the spectral function contribute to the correlator at different τT . Ref. [H. Sandmeyer's thesis]

Lattice correlation

◆□ → < □ → < Ξ → < Ξ → Ξ の へ ○ 6/13</p>

Outlook

Spectral reconstruction (Quenched)

$$\rho_{PS}^{pert}(\omega) = \rho_{PS}^{VAC}(\omega) + A^{match}\rho_{PS}^{THERM}(\omega)$$
$$\rho_{PS}^{mod}(\omega) = A\rho_{PS}^{pert}(\omega - B)$$

Outline Correlators and SPFs 0 0

The spectral function

Lattice correlat

Spectral reconstruction (Full QC

Outlook

Spectral reconstruction (Quenched)

$$\begin{aligned} \rho_{PS}^{pert}(\omega) &= \rho_{PS}^{VAC}(\omega) + A^{match} \rho_{PS}^{THERM}(\omega) \\ \rho_{PS}^{mod}(\omega) &= A \rho_{PS}^{pert}(\omega - B) \end{aligned}$$

Ref. [JHEP 11 (2017) 206, A. Lorenz's thesis]

୬ ବ.ଙ 6/13

э

Lattice correlat

Spectral reconstruction (Full QCI

Outlook

Spectral reconstruction (Quenched)

Ref. [JHEP 11 (2017) 206, A. Lorenz's thesis]

Outline Correlators and SPFs

The spectral function

Lattice correlat

pectral reconstruction (Full QC

Outlook

Mass tuning on mixed action (Full QCD)

- Mixed action approach (Wilson Clover fermions on HISQ configurations)
- Tadpole improved tree-level, $c_{SW} = \frac{1}{u_0^3}, \ u_0 = (tr[U_{\mu\nu}])^{\frac{1}{4}}$
- Quark mass tuning
- Tune spectrum to experimental values

<□ > < @ > < E > < E > E の Q · 8/13

tline Correlators and SPFs T

The spectral function

Lattice correlate

pectral reconstruction (Full QCI

Outlook

Mass tuning on mixed action (Full QCD)

- Mixed action approach (Wilson Clover fermions on HISQ configurations)
- Tadpole improved tree-level, $c_{SW} = \frac{1}{u_0^3}, \ u_0 = (tr[U_{\mu\nu}])^{\frac{1}{4}}$
- Quark mass tuning
- Tune spectrum to experimental values
- HISQ lattices from HotQCD (arXiv:2110.11659) ($m_l = m_s/5$); 64³x64, 96³x32, new temperatures at 96³x56 and 96³x28
- Gradient flow (renormalizes the operators, removes cut-off and mixed action effects and improves signal-to-noise ratio)

Outlook

Correlators: Quenched VS Unquenched

୦଼୍ଙ 9/13

Lattice correlators

Spectral reconstruction (Full QCE

< □ > < @ > < ≧ > < ≧ > ≧ の < ♡ 10/13

Outlook

Perturbative SPF (Full QCD)

$$\frac{\rho_{PS}^{VAC}(\omega)}{\omega^2 m^2(\bar{\mu})} \equiv \frac{N_c}{8\pi} \tilde{R}_c^p(\omega,\bar{\mu})$$

Lattice correlators

Spectral reconstruction (Full QCI

Outlook

Perturbative SPF (Full QCD)

$$\frac{\rho_{PS}^{VAC}(\omega)}{\omega^2 m^2(\bar{\mu})} \equiv \frac{N_c}{8\pi} \tilde{R}_c^p(\omega,\bar{\mu})$$

$$\rho_V^{NRQCD}(\omega) = \frac{1}{2} \left(1 - e^{-\frac{\omega}{T}} \right) \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \, C_{>}$$

$$\rho_{PS}^{THERM} = \frac{M^2}{3} \rho_V^{NRQCD} , \quad \omega \approx 2M$$

< □ > < @ > < ≧ > < ≧ > ≧ の < ♡ 10/13

000

Spectral reconstruction (Full QCD)

Perturbative SPF (Full QCD)

$$\frac{\rho_{PS}^{VAC}(\omega)}{\omega^2 m^2(\bar{\mu})} \equiv \frac{N_c}{8\pi} \tilde{R}_c^p(\omega,\bar{\mu})$$

$$\rho_V^{NRQCD}(\omega) = \frac{1}{2} \left(1 - e^{-\frac{\omega}{T}} \right) \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \, C_{>}$$

$$\rho_{PS}^{THERM} = \frac{M^2}{3} \rho_V^{NRQCD} , \quad \omega \approx 2M$$

 $\rho_{PS}^{pert}(\omega) = \rho_{PS}^{VAC}(\omega) + A^{match} \rho_{PS}^{THERM}(\omega)$ Ref. [JHEP 11 (2017) 206] ◆□ ▶ ◆● ▶ ◆ ■ ▶ ◆ ■ ・ ● ● の へ ● 10/13

The spectral t

Lattice correlators

pectral reconstruction (Full QC

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Outlook

Perturbative SPF (Full QCD)

Outline Correlators and SPFs o

s The spectral 00000 Lattice correlators

pectral reconstruction (Full QCI

Outlook

Perturbative SPF (Full QCD)

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで 11/13

The spectral

Lattice correlat

・ロト・日本・モト・モー・ ヨー のくで

Outlook

Spectral reconstruction (Full QCD)

$$\rho_{PS}^{mod}(\omega) = \mathbf{A} \rho_{PS}^{pert}(\omega - \mathbf{B})$$

Outline Correlators and SPFs

The spectral

Lattice correlat

Outlook

Spectral reconstruction (Full QCD)

$$\rho_{PS}^{mod}(\omega) = A \rho_{PS}^{pert}(\omega - B)$$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - のへで 12/13

Outlook

- Extend the studies on spectral and transport properties from quenched to dynamical QCD
- Study light quark mass effects by comparing $m_l = m_s/5$ and $m_l = m_s/27$
- Study cut-off effects and perform continuum extrapolation
- Improve on perturbative and non-perturbative spectral function models
- Spectral reconstruction based on spectral function model fits and other reconstruction methods
- Estimate in-medium hadronic and transport properties (Kubo relation)

Thank you for your attension !