

MAID - new developments: going weak

Misha Gorshteyn, JGU Mainz

Collaboration with:

Luis Alvarez Ruso (IFIC)

Mainz-Tuzla-Zagreb Collaboration:

- V. Kashevarov, M. Ostrick, L. Tiator (Mainz)
- M. Hadžimehmedović, R. Omerović, H. Osmanović, J. Stahov (Tuzla)
- A. Švarc (Zagreb)

OUTLINE

Motivation: Neutrino Oscillation Experiments and more

MAID: unitary isobar model for e.m. pion production

New Developments

Duality (Resonance-Regge) Electroweak MAID

Summary

Neutrino interactions with matter: Play an important role in many physical processes

Astrophysics

Dynamics of the core-collapse in supernovae r-process nucleosynthesis

Hadronic physics

Nucleon and Nucleon-Resonance transition axial form factors Strangeness content of the nucleon spin

Nuclear physics

Short- and long-range correlations, MEC, nuclear excitations Complement electron scattering studies

CKM unitarity — currently $\sim 3\sigma$ deficit observed Nuclear matrix elements w. weak charged current relevant for nuclear β -decays accessible with neutrinos

Motivation: Neutrino Experiments

Oscillation experiments (with accelerator ν in the few-GeV region):

T2K, NOvA, MicroBooNE, Hyper-K, DUNE

Future DUNE experiment

CERN-FNAL \$1.5B project

Goal: neutrino oscillation parameters — mass hierarchy; CP-violating phases

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2} L}{4E_{\nu}}\right)$$

Prerequisite: need to know the neutrino spectrum $N_{\nu}(E_{\nu})$ for each specie

Motivation: Neutrino Experiments

Neutrinos produced from charged pion decay in HE pA collisions; Broad energy spectrum

Detect charge leptons originating from neutrinos hitting the far detector

Good understanding of neutrino interactions in the near detector for:

 ν detection, flavor identification

 $E_{
u}$ reconstruction, u flux calibration

determination of (irreducible) backgrounds

controlled precision at each step

Pion production: substantial part of inelastic events!

Motivation: Neutrino Experiments

Currently: neutrino event generators use simplified reaction mechanisms for pion production

Until now the exp. uncertainties have been very forgiving;

DUNE: need to achieve < 100 MeV resolution in reconstructed energy (neutrino spectrum spans 0.5 - 5 GeV)

T2HK: < 50 MeV for neutrino spectrum 0.2 - 1.5 GeV

Should be based on analyzing inelastic events in the near detector; Pion production is among most prominent channels

Build upon the detailed knowledge of e-m pion production w. MAID

Extend the energy range 2 GeV -> 6 GeV; include axial current

MAID: PWA Tool since 1998

Ċ maid.kph.uni-mainz.de MAID Photo- and Electroproduction of Pions, Eta, Etaprime and Kaons on the Nucleon Institut für Kernphysik, Universität Mainz Mainz, Germany **MAID2007** unitary isobar model for (e,e'π) **DMT2001** dynamical model for $(e,e'\pi)$ **KAON-MAID** isobar model for (e,e'K) EtaMAID2000 isobar model for (e,e'η) ETA-MAID EtaMAID2018 isobar model for (γ,η) and (γ,η') Chiral MAID chiral perturbation theory approach for (e,e'π) 2-PION-MAID isobar model for (γ,ππ) archive MAID2000 DMT2001original EtaMAID2003 ETAprime2003

MAID: pion photo- and electroproduction

Unitary isobar model $t^{\alpha}_{\gamma,\pi}(W,Q^2) = t^{bg,\,\alpha}_{\gamma,\pi}(W,Q^2)(1+it^{\alpha}_{\pi N}(W)) + t^{R,\,\alpha}_{\gamma,\pi}(W,Q^2)e^{i\phi_R(W,Q^2)}$

Tree-level background potential: Born + t-exchanges + Resonances

FSI: full amplitude acquires the strong phase of the pi-N amplitude $t_{\pi N}^{\alpha}$

Resonances: Breit-Wigner with energy-dependent width

$$t_{\pi N}^{R,\alpha}(W,Q^2) = A_{\alpha}^{R}(Q^2) \frac{f_{\gamma N}(W)\Gamma_{tot}(W)M_R f_{\pi N}(W)}{M_R^2 - W^2 - iM_R \Gamma_{tot}(W)} e^{i\phi_R}$$

Direct channel only (1 resonance - 1 partial wave) Violates crossing but saves the HE behavior

Virtual photons —> phenomenological FF's

Brief history: 1998 MAID98 - (γ, π) and $(e, e'\pi)$

2007 MAID2007 - latest update on (e,e'π)

2000 KaonMAID isobar model for (e,e'K)Λ,Σ

2001 DMT2001 - dynamical model for (e,e'π)

2001 EtaMAID2001 - isobar model for (γ, η) and $(e, e'\eta)$

2003 Reggeized EtaMAID

2007 2-PionMAID2007 - isobar model for (γ,ππ)

2012 Chiral MAID2012 - (e,e'π) at threshold in rel. ChPT

2018 EtaMAID2018 - reggeized isobar model for $(\gamma, \eta('))$

since 2013 Mainz-Tuzla-Zagreb - SE + fixed-t analyticity, L+P, ...

Towards MAID2022 and ν MAID

Extending to high energy: Regge asymptotics

CQM and LQCD predict essentially infinite number of states

Empirical: above W=2.5 GeV s-channel resonances not prominent High energies - t(u)-channel exchanges

- smooth W-dependence, strongly peaked at forward(backward) angles

VM exchanges: unphysical energy behavior

Regge - exchange a tower of states Spectrum: $J = J_0 + \alpha' (M_J^2 - M_0^2)$ One coupling per trajectory

$$\sum_{\mathrm{Res}_t}^{\infty} A^t(s, t, u) \sim s^{\alpha(t)}$$

Regge fit to HE data

Kashevarov, Ostrich, Tiator 1706.07376, PRC 96

How is Regge related to baryon spectrum? — Duality

Regge + Resonances: Duality (Violation)

$$A(s,t,u) = \sum_{\text{Res}_s}^{\infty} A^s(s,t,u) = \sum_{\text{Res}_t}^{\infty} A^t(s,t,u)$$

Algebraic models (van Hove, Veneziano) - duality is trivial: spectra and couplings are exactly known

Infinite sum over t-channel residua = Regge

Duality in real world: integrated strength of s-channel resonances and Regge are the same

Including both s- and t-channel resonances —> double counting!

Regge + Resonances: Duality (Violation)

Exploit duality for extracting few low-lying resonances
Remove part of the strength of Regge in the resonance region

$$A(s,t,u) = \sum_{\text{Res}_s=1}^{N} A^{\text{Res}}(s,t,u) + \sum_{\text{Res}_t}^{\infty} A^t(s,t,u) - \sum_{\text{Res}_s=1}^{N} A^{\text{Res}}(s,t,u)$$

$$\approx \sum_{\text{Res}_s=1}^{N} A^{\text{Res}}(s,t,u) + DF(W) \times A^{\text{Regge}}(s,t,u)$$

Damping factor removes double counting DF
ightarrow 0 at threshold, DF
ightarrow 1 at HE

HE fit: saturated Regge exchanges

Saturation of Regge trajectories. Example for ρ and π reggeons.

Plot: courtesy of V. Kashevarov

Joining Regge with low-energy description

$$A(s)^{\text{Regge}} \sim (-\nu)^{\alpha(t)} \pm \nu^{\alpha(t)}$$

If α unbounded from below —> cross channel dominates over direct

Linear vs Saturated Regge trajectory

α(t) - linear at t>0 (Frautschi plot, meson poles)-t~s >> : pQCD quark exchange - expect 1/t (1/s)

Turns out a crucial difference for PWA!

Joining Regge with low-energy description

Proper unitarization in each partial wave below 1.5 GeV: phase of $\gamma^*N -> \pi N =$ phase of πN -amplitude

Regge amplitude predicts the phase

Smooth transition between two regimes on the level of partial waves?

Decomposing a Regge exchange into multipoles:

Linear trajectory — no reasonable matching to LE model

Resonance-like structures not associated with poles of S-matrix ("Schmid loops") Shows why Resonances + Regge is not a great model

Selected results: total cross sections

Red line: PionMAID2021, green: MAID2007, magenta: SAID SM12, cyan: BnGa-2019 Black dashed: PionMAID2021 background

Selected results: polarized total cross sections

Selected results: helicity asymmetry E

Red lines: PionMAID2021 dotted – all pi0 data not fitted dashed – new A2MAMI not fitted solid – full solution green: MAID2007

Selected results: multipoles

Red line: PionMAID2021, green: MAID2007, black:BnGa-2019 0 -1 -2 -3 -4 -5 0.0 0.2 0.4 0.6 0.8 1.0 Q² (GeV/c)²

solid line: MAID2007 dashed line: MAID2003

Red point: $(-2.5 \pm 0.2 \pm 0.2)$ % R. Beck et al., PRL 78 (1997) 606

PDG2020 estimate: (-2.5 ± 0.5) % (min: -1.6%, max: 3.9%)

Our result: $E_{1+}/M_{1+} = -2.66 \%$

Models on weak pion production on the nucleon

S. Adler, Ann. Phys. 50, 189 (1968) — Born, PCAC, P33 + dispersion relations

Rein, Sehgal Ann. Phys 1981 — PCAC only (π N constraint)

Alvarez-Ruso, Singh, Vicente Vacas nucl-th/9712058, nucl-th/9804007 — P33

Lalakulich, Paschas nucl-th/0501109, hep-ph/0602210 — Resonances

Leitner, Alvarez Ruso, Mosel nucl-th/0601103 — Born + Resonances

Hernandez, Nieves, Valverde hep-ph/0701149 — Born + P33 (later with P33 unitarization)

Serot, Zhang 1206.3812 — ChEFT w pions, Resonances and VM

Sato, Lee Nakamura, Kamano, Sato 1506.03403— dynamical coupled-channel model

Gonzalez-Jimenez et al 1612.05511 — Born + Resonances + Regge

Yao, Alvarez Ruso, Hiller Blin, Vicente Vacas 1806.09364 — Covariant ChPT with dynamical P33 ...

No model with unitarity in all PW with $\ell \leq 3$; Many models "validated" or "calibrated" vs em pion production they do not build upon know-how of isobar models (crucial Res - Backgr interference) When Regge background — duality violation

ν MAID: generalize to charged weak current

$$M_{CC} = \frac{G_F}{\sqrt{2}} \bar{\nu} \gamma_{\mu} (1 - \gamma_5) \mathcal{E} \langle N' \pi \mid V^{\mu} - A^{\mu} \mid N \rangle$$

Vector weak CC: isovector e.m. — known from MAID (isospin symmetry)

Axial weak CC — new

Ingredients:

some old (Born, Resonances, Regge, unitarization)

some new (axial form factors, pion pole, PCAC)

$$\mathsf{PCAC} \qquad i \partial_{\mu} \langle N' \pi \, | \, V^{\mu} - A^{\mu} \, | \, N \rangle = - \, i \partial_{\mu} \langle N' \pi \, | \, A^{\mu} \, | \, N \rangle \, \rightarrow \, \left\{ \begin{array}{c} 0, \quad m_{\pi} = 0 \\ \\ - f_{\pi} T_{\pi N}, \quad Q^2 = 0 \end{array} \right.$$

"Transition Goldberger-Treiman relations" fix WN -> R strength at $Q^2=0$

$$G_{WNR} \propto G_{\pi NR}$$

Unitarized Born contribution (CGLN basis)

Including resonances with unitary phase

Re Born + Res.

Im Born + Res.

Showing few selected amplitudes
Work in progress

Summary

- Neutrino oscillation experiment needs: understand inelastic CC cross sections on few % level
- MAID: valuable PWA tool for e-m meson production since 1998
- Unitary isobar model simple and efficient, good tool for extracting properties of baryons
- Recent improvements: incorporate Regge asymptotics and duality
- Extension to neutrino-induced reactions: work in progress
- Outlook: embed in neutrino event MC simulators

Data base for $\gamma p \rightarrow \pi^0 p$

The biggest data set exist for this reaction:

200 publications with experimental results for 10 observables.

For $d\sigma/d\Omega$ in resonance region used only latest data from A2MAMI and CLAS Collaborations

A2MAMI (red), CB/ELSA (magenta), CLAS (blue), GRAAL (green).

Black points correspond to the old data.

Data base for $\gamma p \rightarrow \pi^+ n$

A2MAMI (red), CLAS (blue)

Black points correspond to the old data.

Data base for $\gamma n \rightarrow \pi^0 n$

Black: old data [1],

Red: A2MAMI [2, 5],

Magenta: A2MAMI [3],

Green: GRAAL [4]

References

- 1. Clinesmith, PhD theris, CIT (1967);
 - C. Bacciet et al., Phys. Lett. C 39, 559 (1972);
 - Y. Hemmiet et al., Nucl. Phys. B 55, 333 (1973);
- A. Ando et al., Physik Daten, Fachinformationszentrum, Karlsruhe (1977).
- 2. M. Dieterle et al. (A2 Collaboration at MAMI), Phys. Rev. C 97, 065205 (2018).
- 3. W. J. Briscoe et al. (A2 Collaboration at MAMI), Phys. Rev. C 100, 065205 (2019).
- 4. R. Di Salvo et al. (GRAAL Collaboration), Eur. Phys. J. A 42, 151 (2009).
- 5. F. Cividini et al., (A2 Collaboration at MAMI), Eur. Phys. J. A 58:113 (2022).

New publication (data are not presented in the plot):

6. C. Mullen et al. (A2 Collaboration at MAMI), Eur. Phys. J. A 57, 205 (2021). (Σ asymmetry, W = 1271 – 1424 MeV, $\cos\Theta$ = from -0.85 to 0.66, 189 experimental points.)

Data base for $\gamma n \rightarrow \pi^- p$

For this reaction beside results on quasi-free neutron target exist data from reaction:

$$\pi^{-}p \rightarrow \gamma n$$

that are in good agreement with neutron data. So, we use both of them.

A2MAMI (red), CLAS (blue), GRAAL (green).

Black points correspond to the old data.

18

PCAC: constraint from πN scattering

$$\frac{d\sigma_{\text{CC}\pi}}{dE_l d\Omega_l}\Big|_{q^2=0} = \frac{G_F^2 V_{ud}^2}{2\pi^2} \frac{2f_\pi^2}{\pi} \frac{E_l^2}{E_\nu - E_l} \sigma_\pi N$$

DCC = Dynamical coupled channel model; RS=Rein-Sehgal model

Plot: courtesy of L. Alvarez Ruso

Vector current does not contribute for $q^2 = 0$; Hence no V × A interference (ν and $\bar{\nu}$ cross sections exactly the same)