

Baryon dynamics from coupled channels

Michael Doering

Department of Energy, DOE DE-AC05-06OR23177 & DE-SC0016582

HPC support by JSC grant jikp07

National Science Foundation Grant No. PHY 2012289

Outline

- Coupled-channel dynamics for the example of $\Lambda(1405)$
- Three-body dynamics: The a₁(1260) and the Roper resonance
- Accessing baryon properties through electroproduction
 - Julich-Bonn-Washington approach

Degrees of freedom: Quarks or hadrons - $\Lambda(1405)$

 Λ (1405) Review by [Mai 2021]

QCD at low energies

Non-perturbative dynamics

→ rich spectrum of excited states

How many states are there?

→ missing resonance problem (does it exist?)

What are they?

→ 2-quark/3-quark, hadron molecules, ...

Dynamical Diquark picture (DSE)

Quark-diquark with reduced pseudoscalar + vector diquarks: [Eichmann (2016]

Decades-long interest in S=-1 low energy

- From Dalitz [PRL 1959] to NNLO treatment connecting all strangeness sectors [J.-Xu Lu (2022)]
- Main question: How does chiral dynamics dictate the low-energy, coupled-channel $\overline{K}N$ interaction?
 - Inherently non-perturbative
 - Expansion of chiral kernels to different chiral orders with subsequent unitarization
- \bullet Ten channels in isospin-0 and I=1, usually with mass differences

$$\pi^0\Lambda,\,\pi^-\Sigma^+,\,\pi^0\Sigma^0,\,\pi^+\Sigma^-,\,K^-p,\,\bar{K}^0n,\,\eta\Lambda,\,\eta\Sigma^0,\,K^0\Xi^0,\,K^+\Xi^-$$

- Their interaction to
 - LO [<u>Kaiser (1995)</u>, <u>Oset (1998)</u>, <u>Oller (2001)</u>, <u>Jido (2003)</u>; ~700 citations each],
 - NLO [Mai (2014), Z. H. Guo (2012)],
 - NNLO [J.-Xu Lu (2022)]
- Full Bethe-Salpeter equation in [Mai (2014)]

$$\begin{split} T(\mathbf{q}_2,\mathbf{q}_1;p) &= V(\mathbf{q}_2,\mathbf{q}_1;p) \\ &+ i \int \frac{d^d\ell}{(2\pi)^d} \frac{V(\mathbf{q}_2,\boldsymbol{\ell};p)}{\ell^2 - M^2 + i\epsilon} \frac{1}{\not p - \ell - m + i\epsilon} T(\boldsymbol{\ell},\mathbf{q}_1;p), \end{split}$$

Interconnecting meson-baryon strangeness sectors at NNLO [J.-Xu Lu, L.S. Geng, MD, Mai 2022]

• First simultaneous study of meson-baryon interaction of

• Strangeness S=0: (πN) Perturbative [SAID WI08 phases]

• S=+1 (KN) Perturbative [SAID SP92]

• S=-1: $(\overline{K}N \text{ in 10 chann.})$ Unitarized exp. data

- Chiral convergence poor for S=0:
 - One really needs NNLO for a global analysis
 - extended-on-mass-shell (EOMS) formulation of BCHPT improves convergence in $SU(3)_f$
- NNLO has more parameters (33) than NLO (20),
 - but interconnection of data sectors (for 1st time) leads to **smaller** uncertainties than NLO due to much larger, "orthogonal" data base.

Results - Data description in S=-1

[J.-Xu Lu 2022]

- Strangeness sector:
 - $x^2/dof = 1.56$ at NNLO with constraints from strangeness S=0 and S=+1
 - compare: $x^2/dof = 2$ at NLO [Z. H. Guo (2012)] without add. constraints

(and threshold quantities/not shown)

Results - PW description in S=0, +1

<u>J.-Xu Lu 2022</u>]

Two-pole structure of $\Lambda(1405)$ confirmed

[J.-Xu Lu 2022]

with smaller uncertainties than at NLO, due to global data analysis.

- NNLO: Main result
- NNLO*: Fit without constraints from baryon masses

Lattice QCD for excited baryons/ 3-body systems

Review: resonances from IQCD [Mai, Meißner, Urbach 2022]

Review: 2B-resonances lattice: [Briceno 2017]
Reviews 3B-lattice: [Hansen 2019] [Mai 2021]

Lattice QCD for excited baryons

 $m_{\pi} = 396 \,\mathrm{MeV} \,[\mathrm{Edwards}\,et\,al.,\,\mathrm{Phys.Rev.}\,\mathrm{D84}\,(2011)]$

- Pioneering spectroscopic calculations
- Information on existence, width & properties of resonances requires
 - Meson-baryon interpolating operators
 - Detailed finite-volume analysis

[G. Silvi et. al., <u>arXiv: 2101.00689</u>] See also: Bulava et al., [2208.03867]

How about $\pi\pi N$? Roper resonance?

Three-body aspects: $\pi\pi N$ vs. $\pi\pi\pi$

Light mesons

- COMPASS @ CERN: $\pi_1(1600)$ discovery
- GlueX @ Jlab in search of hybrids and exotics,
- Finite volume spectrum from lattice QCD:
 Lang (2014), Woss [HadronSpectrum] (2018)
 Hörz (2019), Culver (2020), Fischer (2020),
 Hansen (2020),...

Light baryons

- Roper resonance is debated for ~50 years in experiment. Can only be seen in PWA.
- 1st calculation w. meson-baryon operators on the lattice: Lang et al. (2017)

Lattice QCD for three-body resonances

• First-ever three-body resonance from 1st principles (with explicit three-body dynamics). [Mai/GWQCD, PRL 2021]

Extraction of $a_1(1260)$ from IQCD [Mai/GWQCD, PRL 2021]

Re W

 $\mathbf{M}\mathbf{W}$

ΚΛ ΚΣ

N(1710)

N(1750

Nq

ηN

N'(1440) N (1440)

Three-body effects in the Roper Resonance: Challenge for IQCD

Strategy for <u>data</u> analysis:

 σN

Physical

- manifestly include all known analytic structures into the model amplitude before fitting to data
- Respect unitarity, analyticity,...

ππΝ

 πN

Phenomenology of the baryon spectrum

Review by [Thiel, Afzal, Wunderlich 2022]

Dynamical coupled-channel approaches

- ANL-Osaka (former: EBAC) [Kamano et al.]
- Dubna-Mainz-Taipei model [<u>Tiator</u>]
- Jülich-Bonn(-Washington) [Rönchen]
- . . .
- Characteristics:
 - Direct fit to data (pion & photon-induced)
 - Simultaneous fit to data of different final states
 - Integral scattering equation as needed for proper treatment of three-body channels ($\pi\pi N$)

Note: Only a subclass of analysis efforts; see, e.g., Bonn-Gatchina group K-matrix approach

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int\limits_0^\infty dq \quad q^2 \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

• channels ν , μ , γ :

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- potentials V constructed from effective \mathcal{L}
- s-channel diagrams: T^P
- t- and u-channel: T^{NP}
 dynamical generation of poles
 partial waves strongly correlated
- contact terms

Three-body channels $\sigma N, \pi \Delta, \rho N$

- Resonant sub-channels
- Fit 2→2 amplitude to 2→ 2
 scattering data
- Include as sub-channel in 3-body amplitude:
- 3-body unitarity: Requires, e.g.

JBW: Photoproduction Data base

- $\pi N \rightarrow X$: > 7,000 data points ($\pi N \rightarrow \pi N$: GW-SAID WI08 (ED solution))
- $\gamma N \rightarrow X$:

New: $\pi N \rightarrow \omega N$ [2208.03061] Upcoming data from JParc

Reaction	Observables (# data points)	p./channel
$\gamma p ightarrow \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (2927), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), $C_{x_1'}$ (74), $C_{z_1'}$ (26)	25,542
$\gamma p o \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p o \eta p$	$d\sigma/d\Omega$ (9112), Σ (403), P (7), T (144), F (144), E (129)	9,939
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
$\gamma p o K^+ \Sigma^0$	$d\sigma/d\Omega$ (4271), P (422), Σ (280), T (127), $C_{x',z'}$ (188), $O_{x,z}$ (254)	5,542
$\gamma p o K^0 \Sigma^+$	$d\sigma/d\Omega$ (242), P (78)	320
	in total	57,027

A new web interface [https://jbw.phys.gwu.edu/]

Resonances in $K\Sigma$ photoproduction

$$\gamma p \to K^+ \Sigma^0$$

- [D. Roenchen et al., 2208.00089]
- [Webpage all results]

dominant partial waves: I = 3/2

Exception: P_{13} partial wave (I = 1/2):

N(1720) 3/2 ⁺ ***	Re E_0 [MeV]	$-2 \text{Im } E_0$ [MeV]	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$ [%]	$ heta_{\pi N o K \Sigma}$ [deg]
2022	1726	185	5.9	82
2017	1689(4)	191(3)	0.6(0.4)	26(58)
PDG 2021	1675 ± 15	250^{+150}_{-100}	-	-

N(1900) 3/2 ⁺ ***	Re E_0	$-2 \text{Im } E_0$ [MeV]	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$ [%]	$ heta_{\pi N o K \Sigma}$ [deg]
2022	1905	93	1.3	-40
2017	1923(2)	217(23)	10(7)	-34(74)
PDG 2021	1920±20	150±50	4±2	110±30

drop in cross section ("cusp-like structure") due to $N(1900)3/2^+$

N(1535) ½-	Re E_0	$-2\text{Im }E_0$
* * **	[MeV]	[MeV]
2022	1504(0)	74 (1)
2017	1495(2)	112(1)
PDG 2021	1510 ± 10	130 ± 20

Compare V. Crede's talk Baryons 2022

Pion and eta Electroproduction

First coupled-channel electroproduction analysis with different final states

[M. Mai et al., 2104.07312 [nucl-th], 2111.04774 (PRC)]

Electroproduction reveals resonance structure

Fit Strategies

- Different fit strategies for $N \approx 85,000$ data in $\gamma^* N \to \pi N, \eta N$:
 - Sequential S → S+P → S+P+D waves;
 - Subsets of data until full data set reached
 - Simultaneous fit all parameters (209) set to zero without any (!) guidance
 - Extend data range from $0 < Q^2 < 4~{\rm Gev^2}$ to $0 < Q^2 < 6~{\rm Gev^2}$ to check for stability

Fit		σ_L	$d\sigma_{i}$	$/d\Omega$	σ_T +	$-\epsilon\sigma_L$	σ	T	σ_{I}	LT	σ_{I}	T'	σ_T	T	K_1	D1	P	Y	ρ_I	LT	ρ	LT'	2
F 16		$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\chi^2_{ m dof}$
\mathfrak{F}_1	-	9	65355	53229	870	418	87	88	1212	133	862	762	4400	251	4493	-	234	_	525	-	3300	10294	1.77
\mathfrak{F}_2	177	4	69472	55889	1081	619	65	78	1780	150	1225	822	4274	237	4518		325	770.0	590	2000	3545	10629	1.69
3 3	-	8	66981	54979	568	388	84	95	1863	181	1201	437	3934	339	4296	441	686	-	687	-	3556	9377	1.81
\mathfrak{F}_4	1777	22	63113	52616	562	378	153	107	1270	146	1198	1015	4385	218	5929	7753	699	1777	604	1777	3548	11028	1.78
\mathfrak{F}_5	-	20	65724	53340	536	528	125	81	1507	219	1075	756	4134	230	5236		692	-	554	-	3580	11254	1.81
F 6	1,777	18	71982	58434	1075	501	29	68	1353	135	1600	1810	3935	291	5364	775,5	421	177	587		3932	11475	1.78

Description of Polarization Observables

 π^{0} p, Q²=1 GeV², W=1.23 GeV, ϕ =15⁰

J. J. Kelly, Phys. Rev. Lett. 95 (2005).

Large Multipoles

Fit strategies 1-6 together with MAID (open dots) for the magnetic multipole of the $\Delta(1232)$ Drechsel et al., EPJA (2007) 0710.0306 [nucl-th]

Prominent multipoles are well determined

Roper Multipole

- Zero-transition (agrees with MAID)
- Extensive exploration of parameter space reveals ambiguities in PWA and reflects systematic uncertainties
- Resonance parameters to be extracted

Summary

- Juelich-Bonn-Washington/JBW model: Phenomenology of excited baryons through coupled-channels, two- and <u>three-body</u> dynamics; data from Jlab, ELSA, MAMI, ...
- Renewed effort to explore additional reaction channels in the last year:
 - $\gamma p \rightarrow K \Sigma$
 - $\pi N \rightarrow \omega N$
 - $\gamma^* p \to \pi N$, ηN (Electroproduction)
- Extensive exploration of parameter space leads to significant variance of some multipoles.
- Many "faint" resonance signals confirmed, others not
- Many hyperon polarization data changed (α_{-} decay parameter of \wedge changed)

[D.G. Ireland et al., PRL, 1904.07616]

How to find a minimal resonance spectrum? Model selection.

[J. Landay et al., PRD, <u>1810.00075</u>]

Data aspects: How to get solid statistical statements out of a heterogeneous data base dominated by systematic errors? [New experiments: Klong, Epecur,..]

Outlook for electroproduction analysis

Reaction	Observable	Q^2 [GeV]	W [GeV]	Ref.
	$\sigma_U,\sigma_{LT},\sigma_{TT}$	1.6 - 4.6	2.0 - 3.0	[132]
$ep \rightarrow e'p'\eta$	$\sigma_U,\sigma_{LT},\sigma_{TT}$	0.13 - 3.3	1.5 - 2.3	[137]
	$d\sigma/d\Omega$	0.25 - 1.5	1.5 - 1.86	[138]
	P_N^0	0.8 - 3.2	1.6 - 2.7	[139]
	$\sigma_U, \sigma_{LT}, \sigma_{TT}, \sigma_{LT'}$	1.4 - 3.9	1.6 - 2.6	[140]
$ep \rightarrow e'K^+\Lambda$	P_x', P_z'	0.7 - 5.4	1.6 - 2.6	[141]
	$\sigma_T, \sigma_L, \sigma_{LT}, \sigma_{TT}$	0.5 - 2.8	1.6 - 2.4	[142]
	P_x', P_z'	0.3 - 1.5	1.6 - 2.15	[143]

Table 1: Overview of ηp and $K^+\Lambda$ electroproduction data measured at CLAS for different photon virtualities Q^2 and total energy W. Based on material provided by courtesy of D. Carman (JLab) and I. Strakovsky (GW).

- Many of these (and similar) data await analysis.
- Many more data to emerge at Jlab ($Q^2 = 5 12 \, \mathrm{Ge} v^2$)

e.g.: Carman, Joo, Mokeev, Few Body Syst. 61, 29 (2020)

- Approved Jlab experiments to study
 - Higher-lying nucleon resonances
 - Hybrid baryons
 - High-Q² transition between nonperturbative and perturbative QCD regimes

Klong will improve low-energy data situation

• The **only** low-energy differential cross section available:

Data: [Mast 1976]

NLO: [Sadasivan 2018]

- P-wave important for NLO and NNLO chiral approaches
 - → Not everything is S-wave...!

a₁: Three-particle propagation with helicities

2-body unitarity fixes only part of the interaction;

$$\begin{split} & \tau_{\lambda'\lambda}^{-1}(\sigma_p) = \delta_{\lambda'\lambda} \tilde{K}_n^{-1}(s, \boldsymbol{p}) - \Sigma_{n,\lambda'\lambda}(s, \boldsymbol{p}) \,, \\ & \tilde{K}_n^{-1}(s, \boldsymbol{p}) = \sum_{i=0}^{n-1} a_i \sigma_p^i \quad \text{and} \quad \Sigma_{n,\lambda'\lambda}(s, \boldsymbol{p}) = \\ & \int \frac{d^3k}{(2\pi)^3} \frac{\sigma_p^n}{(4E_k^2)^n} \frac{\hat{v}_{\lambda'}^*(P-p-k,k)\hat{v}_{\lambda}(P-p-k,k)}{2E_k(\sigma_p-4E_k^2+i\epsilon)} \quad \text{for convergence} \\ & \text{for convergence} \end{split}$$

ullet The helicity of the ho in flight can change!

$$\frac{\lambda'}{\underbrace{\xi_{\lambda'\lambda}}}$$

$$\underbrace{\xi_{\lambda'\lambda}}^{\lambda} \neq 0 \quad f_{or} \quad \lambda' \neq \lambda$$

a₁: 2-body input

 Global fit of 2-body sector across different isospins, including correlations across isospin

[Mai 2019]

 Match to twice-subtracted dispersive expression to be used in three-body system

a₁: 4 different fits to 2 energy eigenvalues

• Fitted isobar-spectator interaction (case 1, 2) for $|p| \le 2\pi/L|(1,1,0)| \approx 2.69 \ m_{\pi}$

$$C_{\ell'\ell}(s, \mathbf{p}', \mathbf{p}) = \sum_{i=-1}^{n} c_{\ell'\ell}^{(i)}(\mathbf{p}', \mathbf{p})(s - m_{a_1}^2)^i$$

• Case 2: a_1 is generated as pole even though no built-in singularity

Non-zero coefficients	No of fit parameters	x^2
c_{00}^0 (no built-in pole, $m_{a1}=0$)	1	9
c_{00}^{0} , c_{00}^{1} (no built-in pole, $m_{a1}=0$)	2	0.15
g ₀ , g ₂ , m _{a1}	3	3.2
g ₀ , g ₂ , m _{a1} , c	4	10 ⁻⁷

• Case 3, 4:
$$C_{\ell'\ell}(s, \boldsymbol{p}', \boldsymbol{p}) = g_{\ell'} \left(\frac{|\boldsymbol{p}'|}{m_{\pi}}\right)^{\ell'} \frac{m_{\pi}^2}{s - m_{a_1}^2} g_{\ell} \left(\frac{|\boldsymbol{p}|}{m_{\pi}}\right)^{\ell} + c \, \delta_{\ell'0} \delta_{\ell 0}$$

• In these cases, there is a built-in singularity, leading to resonance poles

a₁: Properties of 4-parameter fit

- 4 parameters for 2 energy eigenvalues produce remarkably stable results with resonance poles in a well-defined region and not all over the place.
- The D-wave coupling and a₁-mass are strongly correlated
 - Makes sense because D-wave a₁ self energy is mostly real

a₁: Results - overview (4 parms)

a₁: Branching ratios

Calculate the residue at the pole:

$$\operatorname{Res}(T^c_{\ell'\ell}(\sqrt{s})) = \tilde{g}_{\ell'}\tilde{g}_{\ell}$$

- This result is not as reliable as pole position/existence of a₁
- More energy eigenvalues needed to better pin down the decay channels
- Other isospins needed, e.g., $(\pi\sigma)_P$ [Molina 2021]

PDG Changes

- Changes from one PDG edition to another
- New states in red
- Upgrade existing states
- Removal older & lower rated states
- All changes come from Partial-wave analysis (PWA) of photoninduced reactions.

Table from [Crede]

Table 9. (Colour online) Baryon Summary Table for N^* and Δ resonances including recent changes from PDG 2010 [2] to PDG 2012 [1].

N^*	$J^P (L_{2I,2J})$	2010	2012	$ \Delta $	$\mid J^P \left(L_{2I,2J} \right)$	2010	2012
p	$1/2^{+}(P_{11})$	* * **	* * **	$\Delta(1232)$	$3/2^{+}(P_{33})$	****	* * **
n	$1/2^{+}(P_{11})$	* * **	* * **	$\Delta(1600)$	$3/2^{+}(P_{33})$	***	***
N(1440)	$1/2^{+}(P_{11})$	* * **	* * **	$\Delta(1620)$	$1/2^{-}(S_{31})$	* * **	* * **
N(1520)	$3/2^{-}(D_{13})$	* * **	* * **	$\Delta(1700)$	$3/2^{-}(D_{33})$	* * **	* * **
N(1535)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1750)$	$1/2^{+}(P_{31})$	*	*
N(1650)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1900)$	$1/2^{-}(S_{31})$	**	**
N(1675)	$5/2^{-}(D_{15})$	* * **	* * **	$\Delta(1905)$	$5/2^{+}(F_{35})$	* * **	* * **
N(1680)	$5/2^{+}(F_{15})$	* * **	* * **	$\Delta(1910)$	$1/2^{+}(P_{31})$	* * **	* * **
N(1685)			*				
N(1700)	$3/2^{-}(D_{13})$	***	* * *	$\Delta(1920)$	$3/2^{+}(P_{33})$	***	* * *
N(1710)	$1/2^{+}(P_{11})$	***	***	$\Delta(1930)$	$5/2^{-}(D_{35})$	***	***
N(1720)	$3/2^{+}(P_{13})$	* * **	* * **	$\Delta(1940)$	$3/2^{-}(D_{33})$	*	**
N(1860)	5/2+		**				
N(1875)	3/2-		***				
N(1880)	1/2+		**				
N(1895)	1/2-		**				
N(1900)	$3/2^{+}(P_{13})$	**	***	$\Delta(1950)$	$7/2^+(F_{37})$	* * **	* * **
N(1990)	$7/2^{+}(F_{17})$	**	**	$\Delta(2000)$	$5/2^+(F_{35})$	**	**
N(2000)	$5/2^+(F_{15})$	**	**	$\Delta(2150)$	$1/2^{-}(S_{31})$	*	*
N(2080)	D_{13}	**	3130	$\Delta(2200)$	$7/2^{-}(G_{37})$	*	*
N(2090)	S_{11}	*		$\Delta(2300)$	$9/2^{+}(H_{39})$	**	**
N(2040)	3/2+		*				
N(2060)	5/2-		**				
N(2100)	$1/2^{+}(P_{11})$	*	*	$\Delta(2350)$	$5/2^{-}(D_{35})$	*	*
N(2120)	3/2-		**		337		
N(2190)	$7/2^{-}(G_{17})$	* * **	* * **	$\Delta(2390)$	$7/2^{+}(F_{37})$	*	*
N(2200)	D_{15}	**		$\Delta(2400)$	$9/2^{-}(G_{39})$	**	**
N(2220)	$9/2^{+}(H_{19})$	* * **	* * **	$\Delta(2420)$	$11/2^+ (H_{3,11})$	* * **	* * **
N(2250)	$9/2^{-}(G_{19})$	* * **	* * **	$\Delta(2750)$	$13/2^-(I_{3,13})$	**	**
N(2600)	$11/2^-(I_{1,11})$	***	***	$\Delta(2950)$	$15/2^+ (K_{3,15})$	**	**
N(2700)	$13/2^+ (K_{1,13})$	**	**	10.1	(5,15)		

Pion Electroproduction – data base

- Data base grown over decades with recent input mostly by CLAS, MAMI.
- Far from complete: Kinematic gaps & consistency issues. Need to combine information from different (W, Q^2) regions
- Need to combine information from simultaneous analysis of different final states $(\pi N/\eta N/KY/\pi \pi N,...)$ to extract resonance helicity couplings

Pion Electroproduction – data base

Extended Q^2 up to 6 GeV² to check dependence of results

	Type	$N_{ m data}$
	$ ho_{LT}$	45
	$ ho_{LT'}$	2644
♦	σ_L	_
	$d\sigma/d\Omega$	39942
•	$\sigma_T + \epsilon \sigma_L$	318
0	σ_T	10
	σ_{LT}	312
\Diamond	$\sigma_{LT}\prime$	198
\triangle	σ_{TT}	266
∇	K_{D1}	1527
	P_Y	2

Structure functions

 $Q^2 = 0.9 \text{ Gev}^2$, $\pi^0 p$

data: CLAS, Phys. Rev. C (2003) <u>0301012 [nucl-ex]</u>, Phys. Rev. Lett. (2002) <u>0110007 [hep-ex]</u>

η Electroproduction

[M. Mai et al., <u>arXiv: 2111.04774</u>]

- $N_{data}^{\eta p} = 1,874 \text{ (only } d\sigma/d\Omega) \text{ (84,842 in total)}$
- kinematic range: $0 < Q^2 < 4 \text{ GeV}^2$, 1.13 < W < 1.6 GeV
- 8 different fit strategies: 4 with standard χ^2 , 4 with weighted χ^2 to account for the smaller $N_{data}^{\eta p}$ → better data description with weighted fit strategies:

Selected fit results: $\gamma^* p \to \eta p$ at W = 1.5 GeV, $Q^2 = 1.2 \, \text{GeV}^2$. Data: Denizli et al. (CLAS) PRC 76 (2007)

Extraction of resonance helicity couplings at the pole is under way

Selected multipoles at W = 1535 MeV

Dots: eta-MAID, arXiv:0110034

Channel space

• Jülich-Bonn-Washington approach has the same channel space as ANL/Osaka (former EBAC) approach

μ	$J^P =$	$\frac{1}{2}^{-}$	$\frac{1}{2}$ +	$\frac{3}{2}$ +	$\frac{3}{2}^{-}$	$\frac{5}{2}$	$\frac{5}{2}$ +	$\frac{7}{2}$	$\frac{7}{2}^{-}$	$\frac{9}{2}$	$\frac{9}{2}$ +
1	πN	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
2	$\rho N(S=1/2)$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
3	$\rho N(S = 3/2, J - L = 1/2)$	r	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
4	$\rho N(S = 3/2, J - L = 3/2)$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}
5	ηN	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
6	$\pi\Delta(J-L =1/2)$	s s	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
7	$\pi\Delta(J-L =3/2)$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}
8	σN	P_{11}	S_{11}	D_{13}	P_{13}	F_{15}	D_{15}	G_{17}	F_{17}	H_{19}	G_{19}
9	$K\Lambda$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
10	$K\Sigma$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}

S-, t- and u-channel exchanges

- **21** *s*-channel states (resonances) coupling to πN , ηN , $K\Lambda$, $K\Sigma$, $\pi \Delta$, ρN .
- t- and u-channel exchanges ("background"):

	πN	ρΝ	ηN	$\pi\Delta$	σΝ	ΚΛ	ΚΣ
πΝ	$N,\Delta,(\pi\pi)_{\sigma},$ $(\pi\pi)_{\rho}$	$N, \Delta, Ct., \\ \pi, \omega, a_1$	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	$\Lambda, \Sigma, \Sigma^*, K^*$
ρΝ		Ν, Δ, Сt., ρ	-	Ν, π	.	÷.	Es.
ηΝ			N, f ₀	-	-	K^*, Λ	Σ, Σ^*, K^*
$\pi\Delta$				Ν, Δ, ρ	π	-	<u> -</u>
σΝ		Is there a	system		Ν, σ	-	
ΚΛ		behind th				$\Xi, \Xi^*, f_0,$ ω, ϕ	Ξ, Ξ*, ρ
ΚΣ							$\Xi, \Xi^*, f_0,$ ω, ϕ, ρ

$2 \rightarrow 3$ and $3 \rightarrow 3$ body unitarity

• See last part of this lecture: Unitarity requires certain transition amplitudes

