Electroexcitation of Bound Nucleons and What We Have Learnt from Free Protons

Ralf W. Gothe
UNIVERSITY
SOUTH CAROLINA

Baryons 2022, International Conference on the Structure of Baryons, November 7-11, 2022, Seville, Spain

- > Why are γ_νNN* electrocouplings interesting? Probing bound valence quarks, baryon wave functions, the emergence of mass, and finally strong QCD.
- ➤ What can be done now? Recent electroproduction results off free and bound nucleons.
- What is needed beyond CLAS12? Beam energy and a high acceptance (exclusive), and high-luminosity detector (beam time) with good W resolution.

This work is supported in parts by the National Science Foundation under Grant PHY 10011349.

Why are they Interesting?

Emergence of Hadron Mass Traced by Electromagnetic Probes

Frank Wilczek, Physics Today, August 2000

Hadron Structure with Electromagnetic Probes

The SM α_s diverges as Q² approaches zero, but confinement and the meson cloud heal this artificial divergence as QCD becomes non-perturbative.

Hadron Spectrum with Electromagnetic Probes

- Study the spectrum of nucleons in the domain where dressed quarks are the major active degree of freedom.
- Explore the formation of excited nucleon states in interactions of fully dressed quarks and their emergence from QCD.

Ralf W. Gothe

Hadron Spectrum with Electromagnetic Probes

Jorge Segovia

	N(940)	N(1440)	$\Delta(1232)$	$\Delta(1600)$
scalar	62%	62%	_	_
pseudovector	29%	29%	100%	100%
mixed	9%	9%	_	_
S-wave	0.76	0.85	0.61	0.30
P-wave	0.23	0.14	0.22	0.15
D-wave	0.01	0.01	0.17	0.52
F-wave	_	_	\sim 0	0.02

Ralf W. Gothe

Hadron Structure with Electromagnetic Probes

3q-core

pQCD

high

- Study the structure of the nucleon spectrum in the domain where dressed quarks are the major active degree of freedom.
- Explore the formation of excited nucleon states in interactions of dressed quarks at various distance scales and their emergence from QCD.

$$W = \frac{2\pi}{\hbar} \left| \langle \psi_f | \mathcal{H}_{\text{int}} | \psi_i \rangle \right|^2 \, \varrho(E')$$

$$W = \frac{\dot{N}(E)}{N_{\rm b} \cdot N_{\rm a}} = \frac{\sigma \cdot v_{\rm a}}{V}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{V^2 E'^2}{(2\pi)^2 (\hbar c)^4} \left| \langle \psi_f | \mathcal{H}_{\mathrm{int}} | \psi_i \rangle \right|^2$$

Emergence of Hadron Mass Traced by Electromagnetic Probes

Study the structure of the nucleon spectrum in the domain where dressed quarks are the major active degree of freedom.

What Can We Do Now?

Data-Driven Data Analyses

Exclusive Single π Electroproduction off the Deuteron

Y. Tian *et al.*, submitted to Phys. Rev C

Exclusive Single π Electroproduction off the Deuteron

$\cos \theta_{\pi}$ - Dependent Structure Functions @ W=1.2125 GeV

W-Dependent of the Structure Function $\sigma_T + \epsilon \sigma_L$

Roper Transition Form Factors in CSM Approach

although its precise location is.

• CLAS Data

Roper Transition Form Factors in CSM Approach

Data-Driven Data Analyses

Consistent Results

Int. J. Mod. Phys. E, Vol. 22, 1330015 (2013) 1-99

$p\pi^{+}\pi^{-}$ Electroproduction off the Free Proton

Gleb Fedotov Phys. Rev. C 98, 025203 (2018)

 $p\pi^+\pi^-$ event yields over W and Q². Gray shaded area new e1e data set, hatched area at low Q² already published e1c data by G. Fedotov et al. and hatched area at higher Q² already published data in one large Q^2 bin by M. Ripani *et al*.

W (GeV)

$p\pi^{+}\pi^{-}$ Electroproduction off the Deuteron

Probing FSI Kinematically

Probing FSI Kinematically

Missing π^- topology (left)

 $M_{X[\pi]}^2$ (GeV²)

0.2 $M_{X[\pi]}^2$ (GeV²)

Probing FSI Kinematically

Quasi-free $p\pi^+\pi^-$ Electroproduction Cross Sections

Iuliia Skorodumina

Ralf W. Gothe

Quasi-Free to Free $p\pi^+\pi^-$ Cross Section Ratios

Iuliia Skorodumina

φ -dependent $p\pi^+\pi^-$ Single-Differential Cross Sections

Arjun Trivedi

φ -independent $p\pi^+\pi^-$ Single-Differential Cross Sections

φ-dependent $p\pi^+\pi^-$ Single-Differential Cross Sections

φ -dependent $p\pi^+\pi^-$ Single-Differential Cross Sections

 Q^2 , W bin = [2.4, 3.0) GeV^2 , [1.725, 1.750)GeV

Arjun Trivedi

Chris McLauchlin extracts the beam helicity dependent differential cross sections.

$$\left(\frac{d^2\sigma}{dX_{ij}d\phi_i}\right) = R2_T^{X_{ij}} + R2_L^{X_{ij}} + R2_{LT}^{c,X_{ij}}\cos\phi_i + R2_{TT}^{c,X_{ij}}\cos2\phi_i + \delta_{X_{ij}\alpha_i}\left(\frac{R2_{LT}^{s,\alpha_i}\sin\phi_i}{R2_{LT}^{s,\alpha_i}\sin\phi_i} + \frac{R2_{TT}^{s,\alpha_i}\sin2\phi_i}{R2_{LT}^{s,\alpha_i}\sin\phi_i}\right)$$

$N(1440)P_{11}$ and $N(1520)D_{13}$ Couplings from CLAS

Viktor Mokeev

Consistent results obtained in the low-lying resonance region by independent analyses in the exclusive N π and p $\pi^+\pi^-$ final-state channels – that have fundamentally different mechanisms for the nonresonant background – underscore the capability of the reaction models to extract reliable resonance electrocouplings.

Phys. Rev. C 80, 055203 (2009) 1-22 and Phys. Rev. C 86, 035203 (2012) 1-22

Δ(1600)3/2⁺ Form Factors in CSM Approach

Δ(1600)3/2⁺ Form Factors in CSM Approach

Viktor Mokeev

Ya Lu et al., PRD 100, 034001 (2019)

 $x=Q^2/m_N^2$

1.56GeV<W<1.66GeV.

Emergence of Hadron Mass

Ralf W. Gothe

CLAS12

CLAS12

- ightharpoonup Luminosity > 10^{35} cm⁻²s⁻¹
- > Hermeticity
- **▶** Polarization
- ➤ Baryon Spectroscopy
- ➤ Elastic Form Factors
- \triangleright N \rightarrow N* Form Factors
- ➤ GPDs and TMDs
- > DIS and SIDIS
- ➤ Nucleon Spin Structure
- ➤ Color Transparency

CLAS12

- ightharpoonup Luminosity >10³⁵ cm⁻²s⁻¹
- ➤ Hermeticity
- **▶** Polarization

- ➤ Baryon Spectroscopy
- ➤ Elastic Form Factors
- \triangleright N \rightarrow N* Form Factors

- ➤ GPDs and TMDs
- ➤ DIS and SIDIS
- ➤ Nucleon Spin Structure
- ➤ Color Transparency
- **>** ...

Preliminary RGA CLAS12 Data Analysis: $p\pi^+\pi^-$

Krishna Neupane CLAS12

1.725 GeV < W < 1.75 GeV and $3 \text{ GeV}^2 < Q^2 < 3.5 \text{ GeV}^2$

φ -dependent N $\pi\pi$ Single-Differential Cross Sections

CLAS20+

Achievable (W,Q2) Coverage at 24 GeV

Krishna Neupane

HSG is currently simulating:

- \checkmark p π^0 ,n π^+ Maksim Davydov
- Dan Carman
- Krishna Neupane \checkmark $p\pi^+\pi^-$

- Comparison to RGA Fall 2018
- RGA inbending simulation
- Fully exclusive $p\pi^+\pi^-$

Inclusive Structure Function in the Resonance Region

P. Stoler, Phys. Rep. 226, 3 (1993) 103-171

Iuliia Skorodumina

TWOPEG tries to extrapolate cross sections based on inclusive structure functions.

TWOPEG Formfactor Extrapolation to 30 GeV²

Iuliia Skorodumina

$$\frac{d^5\sigma}{d^5\tau}(Q^2) = \frac{d^5\sigma}{d^5\tau}(0.65 \ GeV^2) * \frac{F^2(Q^2)}{F^2(0.65 \ GeV^2)} \text{ with } F(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{0.7 \ GeV^2}\right)}$$

 $F(Q^2) = \left(1 + \frac{Q^2}{0.7 \text{ GeV}^2}\right)^{-1}$ $F(Q^2) = \left(1 + \frac{Q^2}{0.7 \text{ GeV}^2}\right)^{-2}$

point like

monopole

 $F(Q^2)=1$

background

resonance excitation

inclusive, semi-inclusive, exlusive:
each channel has a different Q² dependence

$$\frac{d^5\sigma}{d^5\tau}(Q^2) = \frac{d^5\sigma}{d^5\tau}(0.65 \ GeV^2) * \frac{F^2(Q^2)}{F^2(0.65 \ GeV^2)} * \frac{\left(F^2(Q^2)\right)^a}{\left(F^2(0.65 \ GeV^2)\right)^b}$$

Formfactor Extrapolation to 30 GeV²

Baryons 2022
7-11 November, Sevilla

Formfactor Extrapolation to 30 GeV²

Formfactor Extrapolation to 30 GeV²

Krishna Neupane

Acceptance for Exclusive $p\pi^+\pi^-$ Final State

Krishna Neupane

Hadronic Cross Section for Exclusive $p\pi^+\pi^-$ Final State

Krishna Neupane

10-1

1.5

1.6

1.7

W (GeV)

11

8

5

2 = 1.4

1.8

1.9

2.0

5

3

2 | 1.4

1.5

1.6

1.7

W (GeV)

1.9

2.0

1.8

Integrated Luminosity Needs for Exclusive $p\pi^+\pi^-$

Krishna Neupane

Simulated at 24 GeV Beam Energy

Simulated at 10.6 GeV Beam Energy

Integrated Charge Needs for Exclusive $p\pi^+\pi^-$

Krishna Neupane

Simulated at 24 GeV Beam Energy

Simulated at 10.6 GeV Beam Energy

Beam Time Needs for Exclusive $p\pi^+\pi^-$

Krishna Neupane

Based on RGA Fall 2018 Luminosity of 5.96 10³⁴ cm⁻² s⁻¹ at 45 nA

Implementing all analysis cuts (3/2), Golden Run Selection (3), PAC Days (2)

8 (16) years at 5.96 10^{34} cm⁻² s⁻¹ or 6 (12) month at 10^{36} cm⁻² s⁻¹

Beam Time Needs for Exclusive $p\pi^+\pi^-$

Krishna Neupane

Based on RGA Fall 2018 Luminosity of 5.96 10³⁴ cm⁻² s⁻¹ at 45 nA

Implementing all analysis cuts (3/2), Golden Run Selection (3), PAC Days (2)

8 (16) years at 5.96 10^{34} cm⁻² s⁻¹ or 6 (12) month at 10^{36} cm⁻² s⁻¹

	Q ² -coverage of electrocouplings	Range of quark momenta k	Fraction of dressed quark mass at k <k<sub>max</k<sub>
CLAS	< 5 GeV ²	< 0.8 GeV	15%-20%
CLAS12	< 12 GeV ²	< 1.2 GeV	40%-50%
CLAS20+	< 35 GeV ²	< 2.0 GeV	80%

- Beam energy 24 GeV
- Nearly 4π acceptance

Increasing knowledge on running dressed quark mass from the results on $\gamma_{\nu}pN^*$ electrocouplings.

Measured $\gamma_{\nu}pN^*$ electrocouplings of most prominent N* states of different structure will provide sound evidence for understanding how the dominant part of the hadron mass and the N* structure itself emerge from QCD and will make CEBAF@20+ GeV the ultimate QCD-facility at the luminosity frontier.

	Q ² -coverage of electrocouplings	Range of quark momenta k	Fraction of dressed quark mass at k <k<sub>max</k<sub>
CLAS	< 5 GeV ²	< 0.8 GeV	15%-20%
CLAS12	< 12 GeV ²	< 1.2 GeV	40%-50%
CLAS20+	< 35 GeV ²	< 2.0 GeV	80%

Increasing knowledge on running dressed quark mass from the results on $\gamma_{\nu}pN^*$ electrocouplings.

Measured $\gamma_{\nu}pN^*$ electrocouplings of most prominent N* states of different structure will provide sound evidence for understanding how the dominant part of the hadron mass and the N* structure itself emerge from QCD and will make CEBAF@20+ GeV the ultimate QCD-facility at the luminosity frontier.

- Beam energy 24 GeV
- Nearly 4π acceptance

- Beam energy 24 GeV
- Nearly 4π acceptance

Both EIC and EIcC would need much higher luminosity to carry out this program.

- High luminosity detector
- High momentum resolution
- Studies of exclusive reactions

- Beam energy 24 GeV
- Nearly 4π acceptance

Both EIC and EIcC would need much higher luminosity to carry out this program.

- High luminosity detector
- High momentum resolution
- Studies of exclusive reactions

Hadron Structure with CLAS20+

Hadron Structure Group in Hall B is developing a physics case to support CLAS20+ upgrade.

List of Participating Institutions:

- Jefferson Lab (Hall B and Theory Division)
- University of Connecticut
- Genova University and INFN of Genova
- Lamar University
- Ohio University
- Skobeltsyn Nuclear Physics Institute and Physics Department at Lomonosov Moscow State University
- University of South Carolina
- INFN Sez di Roma Tor Vergata and Universita di Roma Tor Vergata
- Nanjing University and affiliated institutes
- Tubingen University
- Tomsk State University and Tomsk Polytechnic University
- James Madison University

https://userweb.jlab.org/~carman/clas24

