b-baryons at the LHCb experiment

Luis Miguel Garcia Martin on behalf of the LHCb collaboration

b-baryons at the LHCb experiment

Outline

Why b-baryons

2 LHC and LHCb experiment

3 Overview of baryon and exotic results

- Searches for conventional baryons
- Searches for exotic hadrons
- Lepton flavour universality
- Rare radiative decays
- CP violation

4 Conclusions and Prospects

Heavy baryons are a useful platform for testing non-perturbative QCD approaches against experimental results

• QCD of baryon simplified in a presence of a heavy quark

• $m_{b,c} >> \Lambda_{\rm QCD} >> m_{qq}, \ m_{b(c)} = 4.8(1.7) \, {\rm GeV}/c^2$

- SU(2) flavour symmetry: light qq uncorrelated from heavy Q flavour
 - Λ_c^+ (Σ_c) properties can be related to Λ_b^0 (Σ_b) with $c \leftrightarrow b$
- Spin symmetry: j_{qq} decoupled from J_Q and conserved

- Non-zero spin grants access to more observables [JPG24(1998)979, EPJC79(2019)634]
- Two spectator quarks \implies different form factors

Introduction: Why b-baryon decays

Must decay outside the third family :

- Long lifetime ($\sim 1.6\,\text{ps})$
- Many accessible decay channels (small BR's)

Type of processes:

- Dominant: $b \rightarrow c$ (favoured) and $b \rightarrow u$ (suppressed)
- Rare: Flavour Changing Neutral Current (FCNC): $b \rightarrow s, d$
 - Strongly suppressed by the Standard Model (SM)
 - Sensitive to indirect effects of New Physics (NP)

Ideal place to probe New Physics effects!

Caveat:

• Uncertainty on b-baryon fragmentation fractions higher than for b-mesons [PRD104(2021)032005, PRD100(2019)031102, PRD99(2019)052006]

•
$$\frac{f_s}{f_d} = 0.2539 \pm 0.0079$$
 $\frac{f_{\Lambda_b}}{f_u + f_d} = 0.259 \pm 0.018$ $\frac{f_{\Xi_b}}{f_{\Lambda_b}} = (8.2 \pm 2.7) \times 10^{-2}$

The LHC

- The LHCb idea: Single-arm forward spectrometer [JINST3(2018)S08005]:
 - ~4% of the solid angle (2 < η < 5)
 - \sim 30% of the *b* hadron production

L.M. Garcia

• The LHCb idea: Single-arm forward spectrometer [JINST3(2018)S08005]:

- ~4% of the solid angle (2 $<\eta<$ 5)
- \sim 30% of the *b* hadron production
- Excellent PID: proton PID crucial
- Precise tracking: $\frac{\Delta p}{p} \sim 0.5\%$, Δ (IP) $\sim 20 \,\mu$ m [IJMPA30,07(2015)1530022]

- The LHCb idea: Single-arm forward spectrometer [JINST3(2018)S08005]:
 - ~4% of the solid angle (2 < η < 5)
 - \sim 30% of the *b* hadron production
- Excellent PID: proton PID crucial
- Precise tracking: $\frac{\Delta p}{p} \sim 0.5\%$, Δ (IP) $\sim 20 \,\mu$ m [IJMPA30,07(2015)1530022]
- Largest sample of heavy flavour decays

- The LHCb idea: Single-arm forward spectrometer [JINST3(2018)S08005]:
 - ~4% of the solid angle (2 $<\eta<$ 5)
 - \sim 30% of the *b* hadron production
- Excellent PID: proton PID crucial
- Precise tracking: $\frac{\Delta p}{p} \sim 0.5\%$, Δ (IP) $\sim 20 \,\mu$ m [IJMPA30,07(2015)1530022]
- Largest sample of heavy flavour decays
- Highly complementary to e^+e^- "B-factory" experiments:
 - Produce all types of *b*,*c*-mesons and baryons
 - Huge cross-section $rac{\sigma(pp)}{\sigma(Y(4S))} \sim 10^3 10^5$

New hadrons

[Patrick Koppenburg]

26 new baryons 22 new exotic hadrons

> Naming convention proposal

> > LHCD

[arXiv:2206.15233]

60 new states discovered by LHCb

• LHCb is a factory of new particles!!

Spectroscopy

bqq' baryons form multiplets (flavour, spin, and spatial wave functions)

• If qq' = (u, d)
$$\implies \Lambda_b^0 (j_{qq'} = 0)$$
 or $\Sigma_b^{(*)} (j_{qq'} = 1)$

$$ullet$$
 (bsq) \implies $arepsilon_b$ $(j_{sq}=0)$ or $arepsilon_b^{\prime(*)}$ $(j_{sq}=1)$

• Expected rich spectrum of excited states at higher masses

Spectroscopy

bqq' baryons form multiplets (flavour, spin, and spatial wave functions)

• If qq' = (u, d)
$$\implies \Lambda_b^0 (j_{qq'} = 0)$$
 or $\Sigma_b^{(*)} (j_{qq'} = 1)$

$$ullet$$
 (bsq) \implies $arpi_b$ $(j_{sq}=0)$ or $arpi_b^{\prime(*)}$ $(j_{sq}=1)$

- Expected rich spectrum of excited states at higher masses
 - Several Λ_b^0 , Ξ_b resonances found in recent years
 - Prediction of resonant 1D states $\Xi_b^{0*} \to (\Sigma_b^{(*)} \to \Lambda_b^0 \pi^{\pm}) K$

Spectroscopy: $\Xi_b^{0^*}$

Search for $\Xi_b^{0*} \rightarrow \Lambda_b^0 \pi^+ K^-$ [PRL128(2022)162001] • Reconstruct $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$

L.M. Garcia

Spectroscopy: $\Xi_b^{0^*}$

Search for $\varXi_b^{0*} \to \varLambda_b^0 \pi^+ K^-$ [PRL128(2022)162001]

- Reconstruct $\Lambda^0_b\!\to\Lambda^+_c\pi^-$ and $\Lambda^0_b\!\to\Lambda^+_c\pi^-\pi^+\pi^-$
- Add prompt K^- and π^+ candidates
 - Found two peaks with $9(5)\sigma$ significance w.r.t no (one) peak hypothesis
 - Two peaks compatible with the 1D doublet states

Spectroscopy: $\Xi_{h}^{0^{*}}$

Search for $\Xi_b^{0*} \rightarrow \Lambda_b^0 \pi^+ K^-$ [PRL128(2022)162001]

- Reconstruct $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^-$
- Add prompt K^- and π^+ candidates
 - Found two peaks with $9(5)\sigma$ significance w.r.t no (one) peak hypothesis
 - Two peaks compatible with the 1D doublet states
- Look for $\Xi_{b}^{0*} \to \Sigma_{b}^{(*)+} K^{-}$, with $\Sigma_{b}^{(*)+} \to \Lambda_{b}^{0} \pi^{+}$ contributions
- Masses, widths and decay patterns are consistent with the predictions ۲

Search for the doubly heavy baryons: Ξ_{bc}^+

Looking for charged $\varXi_{bc}^+ \to J\!/\!\psi\,\varXi_c^+$ [arXiv:2204.09541]

- Partially motivated by previous search for Ξ_{bc}^{0} and Ω_{bc}^{0} [CPC45(2021)093002]
- Using ratio of produced decays (R) with norm. channel $B_c^+ o J/\psi \, D_s^+$

Exotic

Unconventional hadrons (tetra/penta-quarks) predicted since the origin of the Quark Model $\ensuremath{\left[PL8(1964)214 \right]}$

Exotic

Unconventional hadrons (tetra/penta-quarks) predicted since the origin of the Quark Model $[\mbox{PL8(1964)214}]$

- First tetraquark observed at Belle in $B^+ \rightarrow K^+ \pi^- \pi^+ J/\psi$ [PRL91(2003)262001]
- First pentaquark observed at LHCb in $\Lambda_b^0 \rightarrow J/\psi \, p K^-$ [PRL115(2015)072001]

Exotic

Unconventional hadrons (tetra/penta-quarks) predicted since the origin of the Quark Model $[\mbox{PL8(1964)214}]$

- First tetraquark observed at Belle in $B^+ \rightarrow K^+ \pi^- \pi^+ J/\psi$ [PRL91(2003)262001]
- First pentaquark observed at LHCb in $\Lambda_b^0 \rightarrow J/\psi \, pK^-$ [PRL115(2015)072001]
 - Updated analysis with Run 1+2 data [PRL122(2019)222001]
 - Structure at 4312 MeV evident
 - P_c(4450) resolved into 2 narrower structures

Exotic: $P_{\psi s}^{\Lambda}$

Analysis searching for the strange partner $(P_{\psi s}^{\Lambda})$ in $\Xi_b^- \to J/\psi \Lambda K^-$ [SB66(2021)1278]

Exotic: $P_{\psi s}^{\Lambda}$

Analysis searching for the strange partner $(P_{\psi s}^{\Lambda})$ in $\Xi_b^- \to J/\psi \Lambda K^-$ [SB66(2021)1278]

• Few $\Xi^{*-} \rightarrow \Lambda K$ resonances contributing in [1.61, 2.70] GeV/ c^2

Exotic: P_{abs}^{Λ}

Analysis searching for the strange partner $(P_{\psi s}^{\Lambda})$ in $\Xi_{b}^{-} \rightarrow J/\psi \Lambda K^{-}$ [SB66(2021)1278]

- Few $\Xi^{*-} \rightarrow \Lambda K$ resonances contributing in [1.61, 2.70] GeV/ c^2
- Significance of $P_{\psi s}^{\Lambda}$ is 3.1σ
- Also improved precision in mass and width of $\Xi(1690^{-})$ and $\Xi(1820^{-})$

In the SM, the EW coupling of the leptons are equal:

- Decay rates to e, μ , τ only differ by phase-space
- Well established for $Z \rightarrow \ell \ell$, $J/\psi \rightarrow \ell \ell$, $\pi, K \rightarrow \ell \nu$

In the SM, the EW coupling of the leptons are equal:

- Decay rates to e, μ , τ only differ by phase-space
- Well established for $Z \rightarrow \ell \ell$, $J/\psi \rightarrow \ell \ell$, $\pi, K \rightarrow \ell \nu$
- Contribution from New Physics (NP) can affect this universality
 - LFV could be enhanced up to experimentally accessible levels [PRL114(2015)091801]

In the SM, the EW coupling of the leptons are equal:

- Decay rates to e, μ , τ only differ by phase-space
- Well established for $Z \rightarrow \ell \ell$, $J/\psi \rightarrow \ell \ell$, $\pi, K \rightarrow \ell \nu$
- Contribution from New Physics (NP) can affect this universality
 - LFV could be enhanced up to experimentally accessible levels [PRL114(2015)091801]
- Two kinds of semileptonic decays can be studied

In the SM, the EW coupling of the leptons are equal:

- Decay rates to e, μ , τ only differ by phase-space
- Well established for $Z \rightarrow \ell \ell$, $J/\psi \rightarrow \ell \ell$, $\pi, K \rightarrow \ell \nu$
- Contribution from New Physics (NP) can affect this universality
 - LFV could be enhanced up to experimentally accessible levels [PRL114(2015)091801]
- Two kinds of semileptonic decays can be studied
- Need observables with negligible uncertainty from QCD (R_H)

$$R_{H} = \frac{\displaystyle \int_{q^{2}_{\rm min}}^{q^{2}_{\rm max}} \frac{\mathrm{d}\Gamma[B \rightarrow H\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\displaystyle \int_{q^{2}_{\rm min}}^{q^{2}_{\rm max}} \frac{\mathrm{d}\Gamma[B \rightarrow He^{+}e^{-}]}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}$$

LFU test with $\Lambda^0_b \rightarrow \rho K^- \ell^+ \ell^-$ [JHEP05(2020)040]:

• Using 2011-2012 + 2016 dataset (5 fb $^{-1}$)

•
$$R_{pK} = \frac{\mathcal{B}[\Lambda_b^0 \to pK^- \mu^+ \mu^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- e^+ e^-]}$$

LFU test with $\Lambda^0_b \rightarrow \rho K^- \ell^+ \ell^-$ [JHEP05(2020)040]:

- Using 2011-2012 + 2016 dataset $(5 \, \text{fb}^{-1})$
- $R_{pK} = \frac{\mathcal{B}[\Lambda_b^0 \to pK^- \mu^+ \mu^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi(\mu^+ \mu^-)]} \Big/ \frac{\mathcal{B}[\Lambda_b^0 \to pK^- e^+ e^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi(e^+ e^-)]}$
- Significant differences between μ and e reco (e.g. brem, PID, backgrounds

LFU test with $\Lambda^0_b \rightarrow \rho K^- \ell^+ \ell^-$ [JHEP05(2020)040]:

- Using 2011-2012 + 2016 dataset $(5 \, \text{fb}^{-1})$
- $R_{pK} = \frac{\mathcal{B}[\Lambda_b^0 \to pK^- \mu^+ \mu^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi(\mu^+ \mu^-)]} \Big/ \frac{\mathcal{B}[\Lambda_b^0 \to pK^- e^+ e^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi(e^+ e^-)]}$
- Significant differences between μ and e reco (e.g. brem, PID, backgrounds
- First observation of $\Lambda_b^0 \rightarrow p K^- e^+ e^-$

LFU test with $\Lambda^0_b \rightarrow \rho K^- \ell^+ \ell^-$ [JHEP05(2020)040]:

- Using 2011-2012 + 2016 dataset $(5 \, \text{fb}^{-1})$
- $R_{pK} = \frac{\mathcal{B}[\Lambda_b^0 \to pK^- \mu^+ \mu^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi \left(\mu^+ \mu^-\right)]} \Big/ \frac{\mathcal{B}[\Lambda_b^0 \to pK^- e^+ e^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi \left(e^+ e^-\right)]}$
- Significant differences between μ and e reco (e.g. brem, PID, backgrounds
- First observation of $\Lambda_b^0 \rightarrow \rho K^- e^+ e^-$
- First and only measurement $b \rightarrow s\ell\ell$ in baryons $(R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05)$
 - Compatible with SM

LFU test with $\Lambda^0_b \rightarrow \rho K^- \ell^+ \ell^-$ [JHEP05(2020)040]:

- Using 2011-2012 + 2016 dataset $(5 \, \text{fb}^{-1})$
- $R_{pK} = \frac{\mathcal{B}[\Lambda_b^0 \to pK^- \mu^+ \mu^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi(\mu^+ \mu^-)]} \Big/ \frac{\mathcal{B}[\Lambda_b^0 \to pK^- e^+ e^-]}{\mathcal{B}[\Lambda_b^0 \to pK^- J/\psi(e^+ e^-)]}$
- Significant differences between μ and e reco (e.g. brem, PID, backgrounds
- First observation of $\Lambda_b^0 \rightarrow \rho K^- e^+ e^-$
- First and only measurement $b \rightarrow s\ell\ell$ in baryons $(R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05)$
 - Compatible with SM
- Same trend as other LFU tests

b-baryons at the LHCb

LFU tests: $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$

Aim to observe $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$ tauonic decay [PRL128(2022)191803]:

- Reconstruct $\tau^- \rightarrow \pi^+ \pi^- \pi^- (\pi^0) \nu_\tau$
- Using missing energy technique with Λ_b^0 and au mass constraints

•
$$q^2 = p_{\tau \overline{\nu}_{\tau}}^2 = (p_{\Lambda_b^0} - p_{\Lambda_c^+})^2$$

- First observation with 6.1σ significance
- $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}) = 1.50 \pm 0.16(\text{stat}) \pm 0.25(\text{syst}) \pm 0.23(\text{ext})\%$
- First measurement of $R_{\Lambda_c^+} = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}$ (in agreement with SM)

15 / 23

b-baryons at the LHCb expe

Radiative b-baryon decays

Radiative decays: Complementary tests with $b \rightarrow s$ penguins which probe a different set of operators than **leptonic modes**:

- Photon polarization predicted to be mainly left-handed
- New particles can enhance right-handed currents
- Photon polarization accessible through angular distribution (clean observable)

Caveats:

- Challenging reconstruction at LHCb
 - No photon direction and long-lived particle \implies No secondary vertex

Radiative decays: $\Lambda_b^0 \rightarrow \Lambda \gamma$

• First radiative *b*-baryon decay observed (2016 data) [PRL123(2019)031801]

Radiative decays: $\Lambda_b^0 \rightarrow \Lambda \gamma$

- First radiative *b*-baryon decay observed (2016 data) [PRL123(2019)031801]
- Analysis using Run 2 data to measure the photon polarization [PRD105(2022)L051104]
 - Using angular distribution $\Gamma(\cos \theta_p) = 1 \alpha_A \alpha_\gamma \cos \theta_p$
 - Fixing $\alpha_{\Lambda} = 0.754 \pm 0.004$ [NP15(2019)631]
- Photon polarization compatible with SM ($lpha_{\gamma}^{\rm SM}=1$)

Radiative decays: $\Lambda_b^0 \rightarrow \Lambda \gamma$

- First radiative *b*-baryon decay observed (2016 data) [PRL123(2019)031801]
- Analysis using Run 2 data to measure the photon polarization [PRD105(2022)L051104]
 - Using angular distribution $\Gamma(\cos \theta_p) = 1 \alpha_{\Lambda} \alpha_{\gamma} \cos \theta_p$
 - Fixing $\alpha_{\Lambda} = 0.754 \pm 0.004$ [NP15(2019)631]
- Photon polarization compatible with SM ($\alpha_{\gamma}^{\rm SM}=1$)
- Splitting the sample in Λ_b^0 and $\overline{\Lambda}_b^0$ allows to test for CPV
 - Fixing $\alpha_{\Lambda}^+ = -0.758 \pm 0.012$ and $\alpha_{\Lambda}^- = 0.750 \pm 0.010$ [NP15(2019)631]
 - No significant CPV found

Radiative decays: $\Xi_b^- \to \Xi^- \gamma$

First search for the $\varXi^-_b\to \varXi^-\gamma$ radiative decay [JHEP01(2022)069]

• More challenging due to two long-lived particles, and $rac{f_{\Xi_b}}{f_{A^0}}\sim 0.1$

Radiative decays: $\varXi_b^- \to \varXi^- \gamma$

First search for the $\varXi_b^-\to\varXi^-\gamma$ radiative decay [JHEP01(2022)069]

- More challenging due to two long-lived particles, and $rac{f_{\Xi_b}}{f_{A^0}}\sim 0.1$
- No signal is found

Radiative decays: $\varXi_b^- \to \varXi^- \gamma$

First search for the $\varXi_b^-\to\varXi^-\gamma$ radiative decay [JHEP01(2022)069]

- More challenging due to two long-lived particles, and $rac{f_{\Xi_b}}{f_{A^0}}\sim 0.1$
- No signal is found
- Using $\Xi_b^- \to \Xi^- J\!/\psi$ as normalization channel
- First upper limit is set $\mathcal{B}(\Xi_b \to \Xi^- \gamma) < 1.3 \times 10^{-4}$
 - Recent predictions $\mathcal{B}(\varXi_b o \varXi^- \gamma) \sim 10^{-5}$ [PRD105(2022)073007, EPJC82(2022)1,68]

CP violation

• Significant CP asymmetries observed in B mesons [PDG2022]

- $\mathcal{A}^{CP}(B^0 \to K^+\pi^-) = -0.824 \pm 0.0047$
- $\mathcal{A}^{CP}(B^0_s \to K^-\pi^+) = 0.236 \pm 0.017$
- $\mathcal{A}^{CP}(B^0 \to (\pi^+\pi^-)_{\rho}(K^+\pi^-)_{K^*}) = -0.62 \pm 0.13$
- $\mathcal{A}^{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = -0.114 \pm 0.007$ [arXiv:2206.07622]
- No significant CP asymmetry observed in *b*-baryon decays yet [PLB787(2018)124]
 - $\mathcal{A}^{CP}(\Lambda^0_b \to pK^-) = -0.020 \pm 0.023$
 - $\mathcal{A}^{CP}(\Lambda_b^0 \to p\pi^-) = -0.035 \pm 0.026$
 - Suffer from large statistical uncertainties
- Theory prediction [PRD58(1998)096013, PRD69(2004)017901]: $\mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}^-(\pi^-)) \simeq 3(6)\%$
- Abundant resonant structures are observed in multi-body decays of *b*-baryons
 - Decay amplitudes interferences may generate significant CP asymmetry

CP violation

• Significant CP asymmetries observed in B mesons [PDG2022]

- $\mathcal{A}^{CP}(B^0 \to K^+\pi^-) = -0.824 \pm 0.0047$
- $\mathcal{A}^{CP}(B^0_s \to K^-\pi^+) = 0.236 \pm 0.017$
- $\mathcal{A}^{CP}(B^0 \to (\pi^+\pi^-)_{\rho}(K^+\pi^-)_{K^*}) = -0.62 \pm 0.13$
- $\mathcal{A}^{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = -0.114 \pm 0.007$ [arXiv:2206.07622]

• No significant CP asymmetry observed in *b*-baryon decays yet [PLB787(2018)124]

•
$$\mathcal{A}^{CP}_{-}(\Lambda^0_b \to pK^-) = -0.020 \pm 0.023$$

•
$$\mathcal{A}^{CP}(\Lambda_b^0 \to p\pi^-) = -0.035 \pm 0.026$$

- Suffer from large statistical uncertainties
- Theory prediction [PRD58(1998)096013, PRD69(2004)017901]: $\mathcal{A}^{CP}(\Lambda_b^0 \to p \mathcal{K}^-(\pi^-)) \simeq 3(6)\%$
- Abundant resonant structures are observed in multi-body decays of *b*-baryons
 - Decay amplitudes interferences may generate significant CP asymmetry
- Recently discover $\Xi_b^- \rightarrow p K^- K^-$ [PRL118(2017)071801]

CP violation: $\Xi_b^- \rightarrow p K^- K^-$

Study of the CPV using $\Xi_b^- \rightarrow p K^- K^-$ [PRD104(2021)5,052010]

- Using Run 1 + 2015-2016 data sample
 - Also search for $\Omega_b^- \to p K^- K^-$ (not found)

CP violation: $\Xi_b^- \rightarrow p K^- K^-$

Study of the CPV using $\varXi_b^- \to p K^- K^-$ [PRD104(2021)5,052010]

- Using Run 1 + 2015-2016 data sample
 - Also search for $\Omega_b^- \to p K^- K^-$ (not found)
- Considering contribution from intermediate resonances

CP violation: $\Xi_b^- \rightarrow p K^- K^-$

Study of the CPV using $\Xi_b^- \rightarrow p K^- K^-$ [PRD104(2021)5,052010]

- Using Run 1 + 2015-2016 data sample
 - Also search for $\Omega_b^- \to p K^- K^-$ (not found)
- Considering contribution from intermediate resonances
- No CP violation is observed

Component	A^{CP} (10 ⁻²)
$\Sigma(1385)$	$-27 \pm 34 \; (\text{stat}) \pm 73 \; (\text{syst})$
$\Lambda(1405)$	$-1 \pm 24 \text{ (stat)} \pm 32 \text{ (syst)}$
$\Lambda(1520)$	$-5 \pm 9 \text{ (stat)} \pm 8 \text{ (syst)}$
$\Lambda(1670)$	$3 \pm 14 \text{ (stat)} \pm 10 \text{ (syst)}$
$\Sigma(1775)$	$-47 \pm 26 \text{ (stat)} \pm 14 \text{ (syst)}$
$\Sigma(1915)$	$11 \pm 26 \text{ (stat)} \pm 22 \text{ (syst)}$

Prospects

- Upgraded detector for Run 3
- Fully-software trigger + Full detector readout at 40 MHz:
 - Highest throughput among HEP experiments
 - · Large boost in efficiency for hadronic channels

Prospects

- Upgraded detector for Run 3
- Fully-software trigger + Full detector readout at 40 MHz:
 - Highest throughput among HEP experiments
 - Large boost in efficiency for hadronic channels
- x3-5 (x7-10) boost in statistics for Run 3 (Run 4)
 - Access to doubly heavy states
 - Improve precision in measurements [LHCC-G-171]
- We already plan for the next upgrade! [LHCC-2021-012]
- Strong program beyond flavour exploiting unique acceptance
 - Extending the Physics program (e.g. long-lived particles [FBD5(2022)1008737])

	— 9 fb	-1	Upgra	<u>ıde I</u>	<u>ا</u>	Goal: 50 fb ⁻¹ Consolidation		Upgrade I	←−−− Goal: I	: 300 fb-1	→
Run 1	LS1	Run 2	LS2		Run 3	LS3	Run 4	LS4	Run 5	LS5	Run 6
2011 2012 20	13 2014 2015	2016 2017 201	8 2019 2020 2	021 2022	2023 2024 2025	2026 2027 2028	2029 2030 2031 2032	2033 2034	2035 2036 2037 2	039 2040 20	41 2042
	1									LHC	b
R_X precision	$9\mathrm{fb}^{-1}$	$23 {\rm fb}^{-1}$	$50 {\rm fb}^{-1}$	300 fb	D^{-1} De	cav mode			$23 {\rm fb}^{-1}$	$50 \mathrm{fb}^-$	1 - 300
R_K	0.043	0.025	0.017	0.0	$007 - \frac{2}{40}$	Value V	_		2401-	7001-	41
$R_{K^{*0}}$	0.052	0.031	0.020	0.0	$108 - \frac{\Lambda_{b}}{2}$	$\rightarrow J/\psi p K$			540K	700K	41
R_{ϕ}	0.130	0.076	0.050	0.0	Ξ_{b}^{-}	$ \rightarrow J/\psi \Lambda I$	<u>x</u> –		4k	10k	55
$\overline{R_{pK}}$	0.105	0.061	0.041	0.0	Ξ_{c}^{+}	$c^+ \rightarrow \Lambda_c^+ K$	$-\pi^{+}\pi^{+}$		7k	15k	90
R_{π}	0.302	0.176	0.117	0.0	Ξ_b^+	$\rightarrow J/\psi \Xi_c$	+		50	100	60

- LHC is a heavy baryon factory
 - LHCb detector well suited for their detection
- New conventional (excited) and exotic hadrons are discovered every year
 - LHCb steadily supplying new discoveries
- Competitive LFU tests from baryon decays
- First photon polarization measurement in b-baryons
- Still looking for CPV in baryon decays
- Strong synergy with theory colleagues needed as ever!
- Developments in lattice QCD crucial for LHCb precision measurements
 - form-factors, decay constants, predictions of hadron properties...

Thanks for your attention

b-baryons at the LHCb experiment

Phenomenology perspective

- B: affected by hadronic uncertainties
- Angular observables: first-order form-factor cancellations
- LFU: full cancellations in the SM

Experimental perspective

- B: simple extraction, good control of efficiencies through control modes
- Angular observables: need to control acceptance, many parameters require large yields
- LFU: need control of e^{\pm} vs μ^{\pm} efficiencies \implies very challenging at hadron machines

Currently no PDG rule for:

- exotic mesons with *s*, *c*, *b* quantum numbers
- no extension for pentaquark states
- Idea of the proposal:
 - T for tetra, P for penta
 - Superscript: based on existing symbols, to indicate isospin, parity and G-parity
 - Subscript: heavy quark content

Minimal quark content	Current name	$I^{(G)},\;J^{P(C)}$	Proposed name	Reference
$c\bar{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(3872)$	[24, 25]
$c\bar{c}u\bar{d}$	$Z_c(3900)^+$	$I^G = 1^+, J^P = 1^+$	$T_{\psi 1}^{b}(3900)^{+}$	26 - 28
$c\bar{c}u\bar{d}$	$X(4100)^{+}$	$I^{G} = 1^{-}$	$T_{\psi}(4100)^+$	29
$c\bar{c}u\bar{d}$	$Z_c(4430)^+$	$I^G = 1^+, J^P = 1^+$	$T_{\psi 1}^{b}(4430)^{+}$	30, 31
$c\bar{c}(s\bar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(4140)$	32 - 35
$c\bar{c}u\bar{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$	$T^{\theta}_{\text{res1}}(4000)^+$	7
$c\bar{c}u\bar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, J^P = 1^7$	$T_{ws1}(4220)^+$	7
cccc	X(6900)	$I^G = 0^+, J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$	4
$cs\bar{u}\bar{d}$	$X_0(2900)$	$J^{P} = 0^{+}$	$T_{cs0}(2900)^0$	5,6
$cs\bar{u}\bar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$	5,6
$cc\bar{u}\bar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$	8,9
$b\bar{b}u\bar{d}$	$Z_b(10610)^+$	$I^G = 1^+, J^P = 1^+$	$T_{T_1}^b(10610)^+$	[36]
ccuud	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$	3
$c\bar{c}uds$	$P_{cs}(4459)^0$	$I = \hat{0}$	$P_{sis}^{A}(4459)^{0}$	[20]

Search for the doubly heavy baryons: Ξ_{bc}^{0} and Ω_{bc}^{0}

• First search for neutral Ω_{bc}^0 and Ξ_{bc}^0 baryons decaying to $\Lambda_c^+\pi^-$ and $\Xi_c^+\pi^-$ final states [CPC45(2021)093002]

Search for the doubly heavy baryons: Ξ_{bc}^{0} and Ω_{bc}^{0}

- First search for neutral Ω_{bc}^0 and Ξ_{bc}^0 baryons decaying to $\Lambda_c^+\pi^-$ and $\Xi_c^+\pi^-$ final states [CPC45(2021)093002]
- No excess is found:

Search for the doubly heavy baryons: Ξ_{bc}^{0} and Ω_{bc}^{0}

- First search for neutral Ω_{bc}^0 and Ξ_{bc}^0 baryons decaying to $\Lambda_c^+\pi^-$ and $\Xi_c^+\pi^-$ final states [CPC45(2021)093002]
- No excess is found: Setting upper limit

Slices on $m(\Lambda K^+)$ to disentangle contributions from Ξ^{*-} resonances

Exotic: $P_{\psi s}^{\Lambda}$

Slices on $m(\Lambda K^+)$ to disentangle contributions from Ξ^{*-} resonances

Exotic: $P_{\phi s}^{\Lambda}$

Another $P^{\Lambda}_{\phi s}$ found in $B^-
ightarrow J\!/\psi\,\overline{p}\Lambda$ [arXiv:2210.10346]

• Observed with $> 10\sigma$

Exotic: Tetraquarks

- $T_{cs0}(2900)^0$ and $T_{cs1}(2900)^0$ $(c\overline{u}\overline{d}s)$ observed in D^-K^+ [PRL125(2020)242001, PRD102(2020)112003]
 - First open-charm tetraquark
- Looking for isospin partners $T^{a}_{c\overline{s}0}(2900)^{0/++} (c\overline{s}u\overline{d}/c\overline{s}ud)$ [LHCb-PAPER-2022-026, in preparation]
 - First observation (> 9σ)
 - Strong preference for $J^P = 0^+ (> 7\sigma)$

Exotic: Tetraguarks

- $T_{cs0}(2900)^0$ and $T_{cs1}(2900)^0$ $(c\overline{u}\overline{d}s)$ observed in D^-K^+ [PRL125(2020)242001, PRD102(2020)112003]
 - First open-charm tetraquark
- Looking for isospin partners $T^{a}_{c\overline{s}0}(2900)^{0/++}$ $(c\overline{s}u\overline{d}/c\overline{s}u\overline{d})$ [LHCb-PAPER-2022-026, in preparation]

 - First observation (> 9σ)
 Strong preference for J^P = 0⁺ (> 7σ)
- Doubly-charmed tetraquark T_{cc}^+ ($cc\overline{u}\overline{d}$) observed (> 9 σ) [NC13(2022)3351]

LFU tests: $\Lambda_b^0 \rightarrow \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$

⁸⁰⁷ The τ momentum can be estimated, using the constraint that the 3 pions come from the ⁸⁰⁸ τ decay, up to a two-fold ambiguity, as follows:

$$|\vec{p}_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2)|\vec{p}_{3\pi}|\cos\theta \pm \sqrt{(m_{\tau}^2 - m_{3\pi}^2) - 4m_{\tau}^2|\vec{p}_{3\pi}|\sin^2\theta}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta)}$$

⁸¹² To resolve the two-fold ambiguity, one can tune θ in order for both solutions to become ⁸¹³ only one using:

$$\theta_{\max} = \arcsin\left(\frac{m_{\tau}^2 - m_3\pi^2}{2m_{\tau}|\vec{p}_{3\pi}|}\right)$$

Analogous approach for computing Λ_b^0 momentum:

• Using derived p_{τ} as input

Search for the doubly heavy baryon

Double heavy baryons:

- Ideal systems to test effective QCD theories
- The recent LHCb measurement of \varXi_{cc}^{++} has been used:
 - Calculate the binding energy in a QQ diquark
 - Predict the mass of the recently observed T_{cc}^+

Three weakly decaying qqq states with C = 2 and $J^P = 1/2^+$ are expected:

Nonleptonic decays with multiple hadrons:

- ullet Mediated by the weak $b\!\rightarrow ccs$ and $b\!\rightarrow cus$ transitions
- Useful for testing non-perturbative QCD
 - *c* hadronazing separated from the baryon states sensitive to QCD effects in beauty baryon
- Strong interactions hadronic initial and final states
 - More challenging to compute rates than semileptonic partners $(b
 ightarrow c \ell \overline{
 u}_\ell)$

Non leptonic decays: $\Lambda^0_b \rightarrow D^{(*)+} p \pi^- \pi^+$

Search for the $\Lambda^0_b\to D^+p\pi^-\pi^+$ and $\Lambda^0_b\to D^{*+}p\pi^-\pi^+$ decay modes [JHEP03(2022)153]

- Using $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$, $\Lambda_c^+ \to p K^- \pi^+$ as normalization channel
 - Same final state
 - Remove dependency with $f_{\Lambda_{L}^{0}}$

Non leptonic decays: $\Lambda^0_b \rightarrow D^{(*)+} p \pi^- \pi^+$

Search for the $\Lambda_b^0 \rightarrow D^+ p \pi^- \pi^+$ and $\Lambda_b^0 \rightarrow D^{*+} p \pi^- \pi^+$ decay modes [JHEP03(2022)153]

- Using $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$, $\Lambda_c^+ \to p K^- \pi^+$ as normalization channel
 - Same final state
 - Remove dependency with $f_{\Lambda_b^0}$
- First observation of $\Lambda_b^0 \rightarrow D^+ p \pi^- \pi^+$ and $\Lambda_b^0 \rightarrow D^{*+} p \pi^- \pi^+$
- Can be used as normalization for future $\Xi_b^0 \rightarrow D^{(*)+} p K^- \pi^+$ searches

CP violation: $\Lambda_b^0 - \overline{\Lambda}_b^0$ production asymmetry

Study Λ_b^0 - $\overline{\Lambda}_b^0$ production symmetry [JHEP10(2021)060]

- Using $\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu X$
- Assuming CP symmetry in the decay

CP violation: $\Lambda_b^0 - \overline{\Lambda}_b^0$ production asymmetry

Study Λ_b^0 - $\overline{\Lambda}_b^0$ production symmetry [JHEP10(2021)060]

- Using $\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu X$
- Assuming CP symmetry in the decay
- ullet Results incompatible with production symmetry with 5.8σ
- Evidence for dependence of rapidity with 4σ

CP violation: $\Lambda_b^0 - \overline{\Lambda}_b^0$ production asymmetry

Study Λ_b^0 - $\overline{\Lambda}_b^0$ production symmetry [JHEP10(2021)060]

- Using $\Lambda^0_b \to \Lambda^+_c \mu^- \overline{\nu}_\mu X$
- Assuming CP symmetry in the decay
- Results incompatible with production symmetry with 5.8σ
- $\bullet\,$ Evidence for dependence of rapidity with 4σ
- First observation of a particle-antiparticle asymmetry in *b*-hadron
- Relevant result for CPV analyses

b-baryons at the LHCb experiment

Charm-baryon decays

Many interesing results from *c*-baryon decays

- Doubly charmed Ξ_{cc}^{++} first observed [PRL119(2017)112001]
 - Precision measurements of its lifetime [PRL121(2018)052002], mass [JHEP02(2020)049] and production rate [CPC44(2020)022001]
 - Recent observation with new decay channel $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{'+} \pi^{+}$ [JHEP05(2022)038]

Charm-baryon decays

Many interesing results from *c*-baryon decays

- Doubly charmed Ξ_{cc}^{++} first observed [PRL119(2017)112001]
 - Precision measurements of its lifetime [PRL121(2018)052002], mass [JHEP02(2020)049] and production rate [CPC44(2020)022001]
 - Recent observation with new decay channel $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{'+} \pi^{+}$ [JHEP05(2022)038]
- Expected two isospin partners yet to be observed:
 - Search for Ξ_{cc}^+ [JHEP12(2021)107]
 - Search for Ω_{cc}^+ [SCPMA64(2021)101062]

Charm-baryon decays

Many interesing results from *c*-baryon decays

- Doubly charmed Ξ_{cc}^{++} first observed [PRL119(2017)112001]
 - Precision measurements of its lifetime [PRL121(2018)052002], mass [JHEP02(2020)049] and production rate [CPC44(2020)022001]
 - Recent observation with new decay channel $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{'+} \pi^{+}$ [JHEP05(2022)038]
- Expected two isospin partners yet to be observed:
 - Search for Ξ_{cc}^+ [JHEP12(2021)107]
 - Search for Ω_{cc}^+ [SCPMA64(2021)101062]
- $\tau_{\Omega_c^0}$ measurement of Ω_c^0 in disagreement with previous measurements [SB67(2022)479-487] ($\tau_{\Xi_c^0}$ also measured)

