Proton GPDs from Lattice QCD: Fast and Accurate

Shohini Bhattacharya et al., arXiv:2209.05373

Swagato Mukherjee

November 2022, Seville, Spain

GPDs from first-principle lattice QCD

- x dependence
- t-dependence

the way it was ...

Huey-Wen Lin, Tuesday

symmetric

 $\mathcal{H}_0^s, \mathcal{E}_0^s$: pseudo-/quasi-GPD

 $\mathscr{H}_0^s, \mathscr{E}_0^s + pQCD \text{ matching } + z^2 \to 0/P_z \to \infty$

H, *E*: light-cone GPD

the way it was Huey-Wen Lin, Tuesday $\equiv F_0^s$ momenta transfer: $P_z^s - \frac{\Delta^s}{2}, \pm S_x$ $h \leftarrow \tau \rightarrow u$ h^{\dagger} $P_z^s + \frac{\Delta^s}{2}, \pm S_x$

need a separate calculation for each Δ² = - t each calculation is 2 × costlier than asymmetric momenta transfer

the way we wanted ...

momenta transfer: asymmetric

 $\mathcal{H}_0^a, \mathcal{E}_0^a$: pseudo-/quasi-GPD

$$F_0^a = \bar{u} \left[\gamma_0 \mathcal{H}_0^a + \frac{i\sigma^{0\mu} \Delta_{\mu}^a}{2m} \mathcal{E}_0^a \right] u$$

 $\mathscr{H}_0^a, \mathscr{E}_0^a + pQCD matching + z^2 \rightarrow 0/P_z \rightarrow \infty$

H, *E*: light-cone GPD

the way we wanted momenta transfer: asymmetric $P_z^a, \pm S_x \xrightarrow{h} \underbrace{\tau}_{\tau} \underbrace{P_z^s}_{\tau,s} \underbrace{+}_{\tau,s} \underbrace{+}_{\tau,$

multiple Δ² within a single calculation each calculation is 2 × faster than symmetric frame

 $\gtrsim 5 \times$ faster access to t-dependence of GPD

the way it went ...

 $P_{z} = 1.25 \text{ GeV}, t \simeq -0.67 \text{ GeV}, \xi = 0$

 $m_{\pi} = 260 \text{ MeV}, a = 0.093 \text{ fm}, 32^3 \times 64, N_f = 2 + 1 + 1 \text{ twisted mass fermions}$

the way it went

frame-dependent power corrections

the way it went wrong

* Euclidean lattice: the operator must remain space-like $\gamma = \frac{1}{\sqrt{1-\beta^2}} = \sqrt{\frac{E_i^a + E_f^a}{2E_f^a}}$ $\beta = -\sqrt{\frac{E_i^a - E_f^a}{E_i^a + E_f^a}} < 0$

the new Lorentz invariant way ... $\mathbf{P} = (\mathbf{p}_i + \mathbf{p}_f)/2$ $\Delta = \mathbf{p}_f - \mathbf{p}_i$ \mathbf{p}_i, \mathbf{S} $h \leftarrow \tau$ \mathbf{p}_i, \mathbf{S} $h \leftarrow \tau$ \mathbf{p}_f, \mathbf{S}

Lorentz covariant parameterization:

$$\begin{split} F^{\mu}(z,P,\Delta) &= \bar{u}(p_f,\lambda') \bigg[\frac{P^{\mu}}{m} A_1 + m z^{\mu} A_2 + \frac{\Delta^{\mu}}{m} A_3 + i m \sigma^{\mu z} A_4 + \frac{i \sigma^{\mu \Delta}}{m} A_5 \\ &+ \frac{P^{\mu} i \sigma^{z \Delta}}{m} A_6 + m z^{\mu} i \sigma^{z \Delta} A_7 + \frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_8 \bigg] u(p_i,\lambda) \end{split}$$

8 Lorentz invariant amplitudes $A_i (\mathbf{z} \cdot \mathbf{P}, \mathbf{z} \cdot \boldsymbol{\Delta}, \boldsymbol{\Delta}^2, \mathbf{z}^2)$

the new Lorentz invariant way ...

From A's to GPD, Lorentz invariant mapping:

$$F^{+} = \bar{u} \left[\gamma^{+} \mathscr{H} + \frac{i\sigma^{+\mu} \Delta_{\mu}}{2m} \mathscr{E} \right] u$$

11

$$\mathscr{H} = A_1 + \left(\frac{\mathbf{\Delta} \cdot \mathbf{z}}{\mathbf{P} \cdot \mathbf{z}}\right) A_3$$

$$\mathscr{C} = -A_1 - \left(\frac{\mathbf{\Delta} \cdot \mathbf{z}}{\mathbf{\Delta} \cdot \mathbf{z}}\right) A_3 + 2A_5 + 2\left(\mathbf{P} \cdot \mathbf{z}\right) A_6 + 2\left(\mathbf{\Delta} \cdot \mathbf{z}\right) A_8$$

frame-dependent mapping:

$$\mathscr{H}_0^{s/a} = \sum h_i^{s/a} A_i \qquad \mathscr{E}_0^{s/a} = \sum e_i^{s/a} A_i$$

frame-dependent kinematic factors

the new Lorentz invariant way

$$\mathscr{H} = A_1 + \left(\frac{\mathbf{\Delta} \cdot \mathbf{z}}{\mathbf{P} \cdot \mathbf{z}}\right) A_3$$
 frame-dependent power corrections
$$\mathscr{E} = -A_1 - \left(\frac{\mathbf{\Delta} \cdot \mathbf{z}}{\mathbf{\Delta} \cdot \mathbf{z}}\right) A_3 + 2A_5 + 2\left(\mathbf{P} \cdot \mathbf{z}\right) A_6 + 2\left(\mathbf{\Delta} \cdot \mathbf{z}\right) A_8$$

A_i are frame independent*

* A_i can be obtained in any frame from linear combinations of F_{μ} 's with different proton polarizations

reduced frame-dependent power corrections in GPD matrix elements

reduced frame-dependent power corrections in GPD

H and E GPD

16

the new way established ...

a novel Lorentz invariant formalism for lattice calculations of GPD

● faster: ≥ 5 × faster access to t-dependence of GPD
● accurate: reduces frame-dependent power corrections

long way to go ...

• can be naturally extended to other twist-2 and higher-twist GPDs, including for spin-0 hadrons