Proton GPDs from Lattice QCD: Fast and Accurate

Shohini Bhattacharya et al., arXiv:2209.05373

the goal

GPDs from first-principle lattice QCD

O x dependence

- t-dependence

Huey-Wen Lin, Tuesday

$\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}:$ pseudo-/quasi-GPD

$$
F_{0}^{s}=\bar{u}\left[\gamma_{0} \mathscr{H}_{0}^{s}+\frac{i \sigma^{0 \mu} \Delta_{\mu}^{s}}{2 m} \mathscr{C}_{0}^{s}\right] u
$$

$\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}+$ pQCD matching $+z^{2} \rightarrow 0 / P_{z} \rightarrow \infty$
H, E : light-cone GPD

N / q	U	L	T
U	H		E_{T}
L		\tilde{H}	\tilde{E}_{T}
T	E	\tilde{E}	$H_{T} \tilde{H}_{T}$

the way it was

Huey-Wen Lin, Tuesday

- need a separate calculation for each $\Delta^{2}=-t$
- each calculation is $2 \times$ costlier than asymmetric momenta transfer

$\mathscr{H}_{0}^{a}, \mathscr{C}_{0}^{a}$: pseudo-/quasi-GPD

$$
F_{0}^{a}=\bar{u}\left[\gamma_{0} \mathscr{H}_{0}^{a}+\frac{i \sigma^{0 \mu} \Delta_{\mu}^{a}}{2 m} \mathscr{C}_{0}^{a}\right] u
$$

$\mathscr{H}_{0}^{a}, \mathscr{E}_{0}^{a}+$ pQCD matching $+z^{2} \rightarrow 0 / P_{z} \rightarrow \infty$
H, E : light-cone GPD

- multiple Δ^{2} within a single calculation
- each calculation is $2 \times$ faster than symmetric frame
$\gtrsim 5 \times$ faster access to t-dependence of GPD

the way it went ...

$$
P_{z}=1.25 \mathrm{GeV}, t \simeq-0.67 \mathrm{GeV}, \xi=0
$$

$m_{\pi}=260 \mathrm{MeV}, a=0.093 \mathrm{fm}, 32^{3} \times 64, N_{f}=2+1+1$ twisted mass fermions

the way it went

frame-dependent power corrections

the way it went wrong

$$
\begin{array}{rc}
F_{0}^{s} \leftrightarrow \gamma F_{0}^{a}-\gamma \beta F_{\perp}^{a} & \perp \equiv x, y \\
P_{z} \rightarrow \infty \quad F_{0}^{s} \leftrightarrow F_{0}^{a} & \text { frame-dependent } \\
\text { power corrections }
\end{array}
$$

* Euclidean lattice: the operator must remain space-like $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\sqrt{\frac{E_{i}^{a}+E_{f}^{a}}{2 E_{f}^{a}}} \quad \beta=-\sqrt{\frac{E_{i}^{a}-E_{f}^{a}}{E_{i}^{a}+E_{f}^{a}}}<0$

$$
\mathbf{P}=\left(\mathbf{p}_{i}+\mathbf{p}_{f}\right) / 2
$$

$$
\boldsymbol{\Delta}=\mathbf{p}_{f}-\mathbf{p}_{i}
$$

Lorentz covariant parameterization:

$$
\begin{aligned}
F^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{m} A_{1}+m z^{\mu} A_{2}+\right. & \frac{\Delta^{\mu}}{m} A_{3}+i m \sigma^{\mu z} A_{4}+\frac{i \sigma^{\mu \Delta}}{m} A_{5} \\
& \left.+\frac{P^{\mu} i \sigma^{z \Delta}}{m} A_{6}+m z^{\mu} i \sigma^{z \Delta} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_{8}\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

8 Lorentz invariant amplitudes $A_{i}\left(\mathbf{z} \cdot \mathbf{P}, \mathbf{z} \cdot \boldsymbol{\Delta}, \boldsymbol{\Delta}^{2}, \mathbf{z}^{2}\right)$

the new Lorentz invariant way ...

From A's to GPD, Lorentz invariant mapping: $\quad F^{+}=\bar{u}\left[\gamma^{+} \mathscr{H}+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 m} \mathscr{E}\right] u$

$$
\begin{aligned}
& \mathscr{H}=A_{1}+\left(\frac{\boldsymbol{\Delta} \cdot \mathbf{z}}{\mathbf{P} \cdot \mathbf{z}}\right) A_{3} \\
& \mathscr{E}=-A_{1}-\left(\frac{\boldsymbol{\Delta} \cdot \mathbf{z}}{\boldsymbol{\Delta} \cdot \mathbf{z}}\right) A_{3}+2 A_{5}+2(\mathbf{P} \cdot \mathbf{z}) A_{6}+2(\boldsymbol{\Delta} \cdot \mathbf{z}) A_{8}
\end{aligned}
$$

frame-dependent mapping: $\quad \mathscr{H}_{0}^{s / a}=\sum h_{i}^{\text {s/a }} A_{i} \quad \mathscr{E}_{0}^{s / a}=\sum e_{i}^{s / a} A_{i}$
frame-dependent kinematic factors

the new Lorentz invariant way

$$
\begin{aligned}
& \mathscr{H}=A_{1}+\left(\frac{\mathbf{\Delta} \cdot \mathbf{z}}{\mathbf{P} \cdot \mathbf{z}}\right) A_{3} \quad \text { frame-depender } \\
& \mathscr{E}=-A_{1}-\left(\frac{\mathbf{\Delta} \cdot \mathbf{z}}{\boldsymbol{\Delta} \cdot \mathbf{z}}\right) A_{3}+2 A_{5}+2(\mathbf{P} \cdot \mathbf{z}) A_{6}+2(\boldsymbol{\Delta} \cdot \mathbf{z}) A_{8} \\
& \mathscr{H}_{0}^{\text {s/a }}, \mathscr{E}_{0}^{\text {s/a }} \quad-=-=-=-=-\infty \\
& z^{2} \rightarrow 0 / P_{z} \rightarrow \infty \mathscr{H}, \mathscr{E}
\end{aligned}
$$

the way it works ...

A_{i} are frame independent*

* A_{i} can be obtained in any frame from linear combinations of F_{μ} 's with different proton polarizations

the way it works ...

reduced frame-dependent power corrections in GPD matrix elements

the way it works ...

reduced frame-dependent power corrections in GPD

the way it works ...

H and E GPD

the new way established ...

a novel Lorentz invariant formalism for lattice calculations of GPD

- faster: $\gtrsim 5 \times$ faster access to t-dependence of GPD
- accurate: reduces frame-dependent power corrections

long way to go ...

- can be naturally extended to other twist-2 and higher-twist GPDs, including for spin-0 hadrons

