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Demonstrating RG

The main idea of using the RG to our advantage is simple and can
be shown in a demonstrating example as follows:

Let a physical quantity be given in some theory by

X
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f(x)

where x is a parameter and % controls the quantum corrections.

Suppose for whatever reason we calculate this quantity as a power
series expansion, order-by-order with better and better accuracy.

If [ x| < 1 we can expand f(x) in Taylor series around x = 0,
approximating the exact function by the sum of first N terms

f(x) =~ Sy =x+hx®+ 12x3 4 ANV,



For |x| > 1 our expansion leads to a divergent series. In this case
we can try an alternative way by rewriting the function f(x)
identically and expanding in a different way:
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f(x) =

where x,, = x(1 — p)/(1 — hux).
The exact expression of f(x) is p-independent, however the sum of
any finite number of terms depends on L.

While formally this dependence is of higher order, i.e. ~ KNt for the
sum of the first N terms, the convergence properties of the series
crucially depends on the choice of .

For example, for x = 2 this series converges only if ;. > 3/4, the
convergence being best close to i, = 1.



The advantage of using RG in perturbative calculations is based on
the pi-dependence of the sum of any finite number of terms.

This example demonstrates essential features of RG applied to
perturbative calculations:

Exploiting the scale dependence of finite sums of the perturbative
series one chooses such values of the scale parameter which leads
to optimal convergence of perturbative series.

Numerous applications ... pQCD being the best known example.
A nice example using similarity RG has been presented by Maria
Gomez Rocha on Tuesday.

RG is also applied to integral equations in chiral EFT.

For whatever reason some practitioners of few-body sector in chiral
EFT decided that the main virtue is (approximate) order-by-order
RG invariance of perturbative results ...



Consider a Lippmann-Schwinger equation in PW basis:
T(E.p) = V(p.p)+ | akV(p.K)CWT(Kp). (1)

where G(k) is the Green’s function.

Modify the equation and the potential without changing T(p', p):
T(0',p) = V(PP ) + / dk V(p',k, NG(K) (A K)T(k,p). (2)
0

There is freedom of doing this in different ways.

T is A-independent provided that V(p', p, \) satisfies Wilsonian RG
equation.

Calculating V(p', p, \) order-by-order in some expansion, and
solving for corresponding approximate amplitudes for different
choices of A may lead to dramatically different convergence
properties!



RG trajectory of a toy model potential

Starting with an "underlying" potential, we construct the LO EFT
approximation and compare it to the exact Wilsonian RG trajectory.
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where & = 50 x 1078 MeV—2, M = 138.5 MeV, m; = 750 MeV and
ms = 1150 MeV.

V(r) vanishes for r — 0, and behaves as —a e=M/r3 for large r.

E. Epelbaum, A. M. Gasparyan, J. Gegelia and U. G. MeiBner, Eur. Phys.
J. A54,no.11, 186 (2018).



We consider the LS equation for the S-wave K-matrix

2
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At low energies, we can integrate out the high-energy modes and
obtain the scattering amplitude by solving the regularized equation
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where the potential V(p/, p, \) satisfies the RG equation
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The potential V(p', p, \) is the exact Wilsonian RG trajectory of the
underlying potential.



For low energies the potential V(p’, p, ) can be approximated by
LO EFT potential Vio = C63(F) —ae M /r3.
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Figure: "Underlying" potential (solid line) and the LO long-range
approximation (dashed line).



We adjust C(A) such that at low energies, the phase shifts are well
described by the solution to the equation:

diP 1
Kio(p', p) = Vio(p',p) + mP.V. / z Vio(p',1) 17— Kio(l,p).

The resulting phase shifts are plotted as a function of k together
with the phase shifts corresponding to the underlying model.
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Figure: The S-wave phase shift for the underlying toy model and the LO
approximation shown by the solid red and dashed blue lines, respectively.
Short- and long-dashed lines correspond to A = 300 and A = 450 MeV,
respectively.



Following the IcRG-invariant approach, by adjusting C(A), (almost)
cutoff-independent results for phase shifts at low energies can be
obtained for arbitrarily large A.

The RG trajectories of the LO and underlying potentials are plotted
in next page.
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Figure: RG trajectories. Red and blue lines correspond to the underlying

model and the LO approximation, respectively.
The right panel is a zoomed version of the left one.

While the LO potential does approximate well the exact RG
trajectory for A around ~ 300 MeV, the limit-cycle behavior of the LO
potential for larger values of the cutoff is just an artifact of the
IcRG-invariant approach.



Chiral EFT for P-wave halo states and RG

Consider two non-relativistic particles with range of interaction
~ 1/ M.

ERE of the amplitude with the orbital angular momentum /:

1 k2!
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where a, r and v; are the scattering length, effective range and the
shape parameters.

We consider the EFT for P-wave scattering valid for momenta



We are interested in fine-tuned systems, for which the scattering
amplitude has poles located within the validity range of the EFT.

Assume that the first two terms in the ERE are fine tuned as
1ja~MS,  re~M,,  va~M2" (3)

In low-energy EFT with contact interactions only the two
lowest-order contact interactions in the effective potential

V=Coplp+Caplp (P2 +p?) +..., (4)

need to be iterated in the LS equation to all orders.



We solve

NPRdl V(p,I) T(I,p)
/ Y
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for the above potential.

The on-shell amplitude T (k) = T(k, k) is given as:
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where the integrals /, and /(k) are defined via
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Following the IcRG-invariant scheme, we express Cy(A) and Cu(A)
in terms of a and r and take the A — oo limit obtaining
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The bare LECs C,, C4 have the form
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Both bare couplings become complex for a sufficiently large values
of the cutoff A.

This observation is in line with the causality bound
r<—2/R(1+ O(R3/a)) obtained in

H. W. Hammer and D. Lee, Annals Phys. 325, 2212-2233 (2010).
if the range of the interaction R is identified with 1/A.

According to the IcRG-invariant approach the considered fine-tuned
P-wave system cannot be described in an EFT with contact
interactions only.

The problem actually lies in the procedure of the IcRG-invariant
approach rather than in the EFT itself.



Subtractive renormalization

We renormalize the amplitude by applying BPHZ procedure, i.e.
subtracting all UV divergences prior to taking the limit A — oc.

Specifically, we first separate out power-like UV divergences in the
appearing integrals in the most general way via

i 2dl o NRdl o, s g
Ih = —m/o 277r2/n _m/m 2—7r2/n = Iy (pn) + An(pn)
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where 1, denote the corresponding subtraction scales.

We renormalize the amplitude by simultaneously replacing the
integrals /, and (k) with /7 (u) and I7(k, 1) and the bare
couplings C» and C4 by the corresponding p.,-dependent
renormalized couplings C and CF, respectively.



Since the renormalized amplitude depends only on UV-convergent
integrals, we can now safely take the limit A — oc.

Fixing the renormalized LECs by the requirement to reproduce a
and r leads to our final result:
4 2
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The renormalized scattering amplitude depends on x4 and ps.

The choice of u; plays a key role in setting up a self-consistent
power counting.

Indeed, one must choose 3 ~ M since setting 3 ~ M, would
lead to poles in the effective range function located at kK ~ M,
thereby resulting in enhanced values of the coefficients in the ERE.

A self-consistent Weinberg-like scheme with manifest power
counting with all LECs scaling according to NDA emerges if we set
ps ~ pz ~ g ~ ...~ M.

The remaining scale pq can be chosen either as iy ~ My; or

M~ M.



Summary
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Briefly discussed the idea of applying RG to perturbative
calculations.

Compared the exact RG flow for a toy-model potential to the
approximate result obtained using the IcRG-invariant approach.
The obtained limit-cycle A-dependence of the LO potential
disagrees with the smooth RG flow of the underlying model.
Concluded that:

In Wilsonian approach taking A ~ M; or larger is not compatible
with the approximate expansion of the bare potential.

Revisited the problem of renormalization in halo EFT for
P-wave scattering.

Properly renormalized the P-wave amplitude using BPHZ
scheme.



