Consistency of the molecular picture of $\Omega(2012)$ with the latest Belle results

Natsumi Ikeno (Tottori University, Texas A&M University)

Genaro Toledo, Wei-Hong Liang, Eulogio Oset

R. Pavao and E. Oset, Eur. Phys. J. C78, 857 (2018).

N. Ikeno, G. Toledo, and E. Oset, Phys. Rev. D 101, 094016 (2020).

N. Ikeno, W. H. Liang, G. Toledo, and E. Oset, Phys.Rev.D 106, 034022 (2022).

Discovery of $\Omega(2012)$: Strangeness = -3

In **2018**, Belle reported a new state $\Omega(2012)$ state: [Phys. Rev. Lett. 121, 052003 (2018)]

$$M_{\Omega(2012)} = 2012.4 \pm 0.7 \pm 0.6 \text{ MeV}$$

$$\Gamma_{\Omega(2012)} = 6.4^{+2.5}_{-2.0} \pm 1.6 \text{ MeV}$$

This prompted many theoretical studies on the issue

- Quark model pictures
- Molecular pictures based on the meson-baryon interaction
- Only $\bar{K}\Xi^*(1530)$ state:
 - Y. H. Lin and B. S. Zou, Phys. Rev. D 98, 056013 (2018).
- Coupled channels $\bar{K}\Xi^*(1530)$, $\eta\Omega,\bar{K}\Xi$
 - M. P. Valderrama, Phys. Rev. D 98, 054009 (2018).
 - Y. Huang, M. Z. Liu, J. X. Lu, J. J. Xie, and L. S. Geng, Phys. Rev. D 98, 076012 (2018).
 - R. Pavao and E. Oset, Eur. Phys. J. C 78, 857 (2018).
 - M. V. Polyakov, H. D. Son, B. D. Sun, and A. Tandogan, Phys. Lett. B 792, 315 (2019).

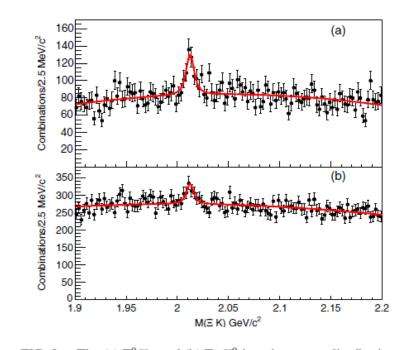


FIG. 2. The (a) $\Xi^0 K^-$ and (b) $\Xi^- K_S^0$ invariant mass distributions in data taken at the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonance energies.

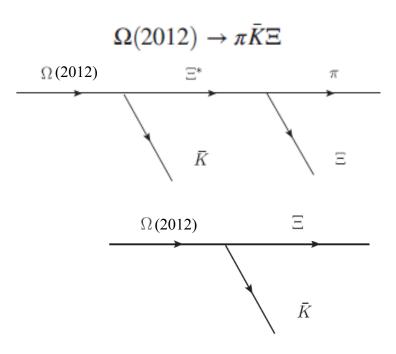
Recent Belle data

- In **2019**, Belle showed a result of the $\Omega(2012)$ decay: [Phys. Rev. D 100, 032006(2019)]
 - Ratio R of the $\Xi \pi K$ width to the ΞK width is smaller than 11.9%.

$$\mathcal{R}_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega(2012) \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega(2012) \to \Xi K)} < 11.9\%$$

⇒ In **2022**, a recent reanalysis of data (different cut): [arXiv:2207.03090 (2022)]

$$\mathcal{R}_{\Xi\bar{K}}^{\Xi\pi\bar{K}} = 0.97 \pm 0.24 \pm 0.07 \sim 97\%$$



• In **2021**, $\Omega(2012)$ has been observed in the Ω_c decay [Phys. Rev. D 104, 052005(2021)]

$$\frac{\mathcal{B}(\Omega_c^0 \to \pi^+ \Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to K^- \Xi^0)}{\mathcal{B}(\Omega_c^0 \to \pi^+ K^- \Xi^0)} = (9.6 \pm 3.2 \pm 1.8)\%$$

Our study

We study the $\Omega(2012)$ state with the coupled channels approach:

 $\Omega(2012)$ is dynamically generated as a molecular state from the interaction of the $\bar{K}\Xi^*$ and $\eta\Omega$ coupled channels

=> We like to show the consistency of the molecular picture

with Belle results
$$\begin{cases} \mathcal{R}_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega(2012) \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega(2012) \to \Xi K)} < 11.9\% & \text{(2019 ver.)} \\ \mathcal{R}_{\Xi \bar{K}}^{\Xi \pi \bar{K}} = 0.97 \pm 0.24 \pm 0.07 & \text{(reanalysis: 2022 ver.)} \\ \frac{\mathcal{B}(\Omega_c^0 \to \pi^+ \Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to K^- \Xi^0)}{\mathcal{B}(\Omega_c^0 \to \pi^+ K^- \Xi^0)} = (9.6 \pm 3.2 \pm 1.8)\% \end{cases}$$

- \checkmark We calculate the mass, width, and decay ratio R of $\Omega(2012)$
- \checkmark We also study a mechanism for $\Omega_c \to \pi^+\Omega(2012) \to \pi^+(K^-\Xi^0)$ reaction

Formalism: Coupled channels approach

R. Pavao and E. Oset, EPJC78(2018) N. Ikeno, G. Toledo, E. Oset, PRD(2020)

3 channels:
$$\bar{K}\Xi^*, \eta\Omega$$
 (s-wave), $\bar{K}\Xi$ (d-wave)

• Bethe-Salpeter equation:

$$T = \left[1 - VG\right]^{-1}V$$

• Transition potential: $\Omega^* J^p = 3/2^-$

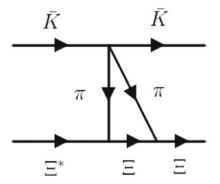
$$V = \begin{pmatrix} \bar{K}\Xi^* & \eta\Omega & \bar{K}\Xi \\ 0 & 3F & \alpha q_{\rm on}^2 \\ 3F & 0 & \beta q_{\rm on}^2 \\ \alpha q_{\rm on}^2 & \beta q_{\rm on}^2 & 0 \end{pmatrix} \begin{pmatrix} \bar{K}\Xi^* \\ \eta\Omega \\ \bar{K}\Xi^* \end{pmatrix}$$

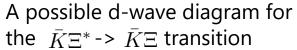
$$F = -\frac{1}{4f^2}(k^0 + k'^0)$$
 $q_{\text{on}} = \frac{\lambda^{1/2}(s, m_{\bar{K}}^2, m_{\Xi}^2)}{2\sqrt{s}}$

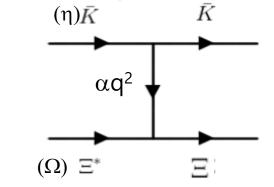
k⁰, k'⁰ the energies of initial and final states

-the diagonal potential is null -the non-diagonal potential is nonzero.

- s-wave potentials between $\bar{K}\Xi^*$ and $\eta\Omega$: taken from chiral Lagrangian of
 - S. Sarkar, E. Oset, M.J. Vicente Vacas, NPA750(2005) 294 E.E. Kolomeitsev, M.F.M. Lutz, PLB 585 (2004) 243–252
- d-wave potential between $\bar{K}\Xi$ and $\bar{K}\Xi^*$ or $\eta\Omega$: described in terms of α , β : free parameters







We do not make a model Estimates done by M. P. Valderrama, PRD98,054009 (2018).

$G_{\kappa^-\Xi^*}$ function accounting for $\Xi^* \to \pi\Xi$ decay

Meson-Baryon loop function G:

Meson-Baryon loop function G: For s-wave channel
$$G(\sqrt{s}) = \begin{pmatrix} G_{\bar{K}\Xi^*}(\sqrt{s}) & 0 & 0 \\ 0 & G_{\eta\Omega}(\sqrt{s}) & 0 \\ 0 & 0 & G_{\bar{K}\Xi}(\sqrt{s}) \end{pmatrix}$$
 For d-wave channel for $i = \bar{K}\Xi^*$, $\eta = 0$ for $i = \bar{K}\Xi^*$, $\eta = 0$ for $i = \bar{K}\Xi^*$ for d-wave channel for $i = \bar{K}\Xi^*$ for $i = \bar{K}\Xi^*$ for d-wave channel for $i = \bar{K}\Xi^*$ for i

For s-wave channel

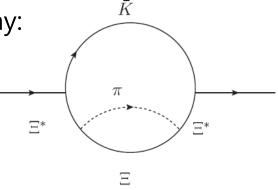
$$G_i(\sqrt{s}) = \int_{|\boldsymbol{q}| < q_{\text{max}}} \frac{d^3q}{(2\pi)^3} \frac{1}{2\omega_i(\boldsymbol{q})} \frac{M_i}{E_i(\boldsymbol{q})} \frac{1}{\sqrt{s} - \omega_i(\boldsymbol{q}) - E_i(\boldsymbol{q}) + i\epsilon}$$

$$G_{\bar{K}\Xi}(\sqrt{s}) = \int_{|\boldsymbol{q}| < g'} \frac{d^3q}{(2\pi)^3} \frac{(q/q_{\rm on})^4}{2\omega_{\bar{K}}(\boldsymbol{q})} \frac{M_{\Xi}}{E_{\Xi}(\boldsymbol{q})} \frac{1}{\sqrt{s} - \omega_{\bar{K}}(\boldsymbol{q}) - E_{\Xi}(\boldsymbol{q}) + i\epsilon}$$

We take into account the Ξ^* mass distribution due to its width for $\Xi^* \to \pi \Xi$ decay:

 $G_{K\Xi_*}$ is convolved with the Ξ^* mass distribution: $\Omega(2012) \rightarrow \pi K\Xi$ decay

$$\tilde{G}_{\bar{K}\Xi^*}(\sqrt{s}) = \frac{1}{N} \int_{M_{\Xi^*} - \Delta M_{\Xi^*}}^{M_{\Xi^*} + \Delta M_{\Xi^*}} d\tilde{M} \left(-\frac{1}{\pi} \right) \operatorname{Im} \left(\frac{1}{\tilde{M} - M_{\Xi^*} + i \frac{\Gamma_{\Xi^*}}{2}} \right) G_{\bar{K}\Xi^*}(\sqrt{s}, m_{\bar{K}}, \tilde{M})$$



for $i = \bar{K}\Xi^*, \eta\Omega$

=> Comparison of the $\Omega(2012)$ with/without convolution gives us the estimate of $\Omega(2012)$ decay width into $\bar{K}\Xi$ and $\pi\bar{K}\Xi$ decay channels :

$$R = \frac{\Gamma_{\Omega^* \to \pi \bar{K}\Xi}}{\Gamma_{\Omega^* \to \bar{K}\Xi}} = \frac{\Gamma_{\Omega^*, \text{con}} - \Gamma_{\Omega^*, \text{non}}}{\Gamma_{\Omega^*, \text{non}}}$$

 $\Gamma_{con}: G_{K^-\Xi^*}$ with convolution (accounts for $K\Xi$ and $\pi K\Xi$ decays)

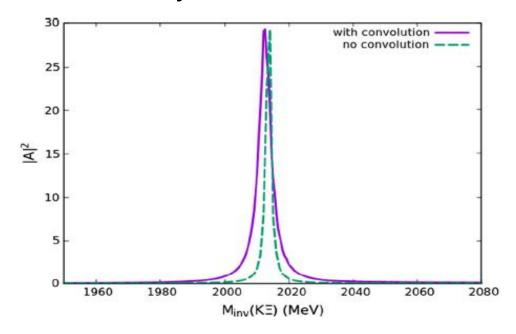
 $\Gamma_{\text{non}}: \mathsf{G}_{\mathsf{K}^-\Xi^*}$ without convolution (only for $\mathsf{K}\Xi$ decay)

Calculated $\Omega(2012)$ mass, width, and decay ratio

We make a fit to the experimental data by changing the α , β , q_{max} parameters.

$$M_{\Omega(2012)} = 2012.4 \pm 0.7 \pm 0.6 \,\text{MeV}$$
 $\Gamma_{\Omega(2012)} = 6.4^{+2.5}_{-2.0} \pm 1.6 \,\text{MeV}$

Result by R. Pavao and E. Oset, EPJC78(2018)



$\alpha \; (\text{MeV}^{-3})$	$\beta (\text{MeV}^{-3})$	$q_{\text{max}} = q'_{\text{max}} \text{ (MeV)}$
4.0×10^{-8}	1.5×10^{-8}	735

- Result with convolution

$$m_{\Omega^*} = 2012.37 \text{ MeV},$$

$$\Gamma_{\Omega^*} = 6.24 \text{ MeV}.$$

- Result without convolution

$$m_{\Omega^*}^{\text{(no conv.)}} = 2013.5 \text{ MeV},$$

$$\Gamma_{\Omega^*}^{\text{(no conv.)}} = 3.2 \text{ MeV}.$$

$$R = \frac{\Gamma_{\Omega^* \to \pi \bar{K}\Xi}}{\Gamma_{\Omega^* \to \bar{K}\Xi}} = \frac{\Gamma_{\Omega^*, \text{con}} - \Gamma_{\Omega^*, \text{non}}}{\Gamma_{\Omega^*, \text{non}}} = 0.95$$

=> Good agreement with the latest Belle result $\mathcal{R}_{\Xi\bar{K}}^{\Xi\pi\bar{K}}=0.97\pm0.24\pm0.07$

Limitation of calculated ratio R

We also find an acceptable solution in terms of natural values for the q_{max} , α , β parameters which reproduce fairly well the experimental data in 2019

$$\mathsf{R} = \frac{\Gamma_{\Omega}(\pi \bar{K}\Xi)}{\Gamma_{\Omega,\bar{K}\Xi}} < 11.9 \,\%$$

Results by N. Ikeno, G. Toledo, and E. Oset, PRD101, 094016 (2020)

	Set 1	Set 2	Set 3
$q_{\text{max}}(\bar{K}\Xi^*)$ [MeV]	735	775	735
$q_{\max}(\eta\Omega)$ [MeV]	735	710	750
$\alpha \ [10^{-8} \ \text{MeV}^{-3}]$	-8.7	-8.7	-11.0
$\beta \ [10^{-8} \ \text{MeV}^{-3}]$	18.3	18.3	20.0
R	10.9 %	10.4 %	10.9 %

Similar results in J. Lu, C. Zeng, E. Wang, J. Xie, and L. Geng, Eur. Phys. J. C, 361 (2020)

=> The molecular picture was pushed to the limit and showed that the ratio R could be made as small as 10%, but not smaller than 10%

Couplings g_i of different channels

• The couplings g_i of the $\Omega(2012)$ to the different channels are obtained from the residue of the T-matrix of the pole in the second Riemann sheet. Close to the pole

$$T_{ij} = \frac{g_i g_j}{z - z_R} (z, \text{complex energy}; z_R, \text{complex pole position})$$

$$g_i^2 = \lim_{z \to z_R} (z - z_R) T_{ii}; \quad g_j = g_i \frac{T_{ij}}{T_{ii}} |_{z = z_R}.$$

• We also show the wave function at the origin for the s-wave states, wf(g_iG_i ,), and the probability of each channel $-g_i^2 \frac{\partial G_i}{\partial \sqrt{s}}$ $\sum_i (-)g_i^2 \frac{\partial G}{\partial \sqrt{s}} = 1$,

	$\bar{K}\Xi^*$ (2027)	$\eta\Omega$ (2220)	<u>Κ</u> Ξ (1812)
g_i	1.86 - i0.02	3.52 - i0.46	-0.42 + i0.12
g_i (Pavao, Oset)	2.01 + i0.02	2.84 - i0.01	-0.29 + i0.04
	-34.05 - i1.10 $0.57 + i0.10$	-30.66 + i3.67 $0.25 - i0.06$	

- D. Gamermann, J. Nieves, E. Oset, and E. R. Arriola, PRD 81, 014029 (2010).
- F. Aceti, L.R. Dai, L.S. Geng, E. Oset and Y. Zhang, EPJA50, 57 (2014)
- S. Weinberg, Phys. Rev. 130, 776 (1963).
- T. Hyodo, D. Jido and A. Hosaka, PRC85,015201 (2012).
- T. Hyodo, Int. J. Mod. Phys. A28, 1330045 (2013).
- T. Sekihara, PRC104, 035202 (2021),

=> The strength of the wf and the probability dominates for the $\overline{K}\Xi^*$ state.

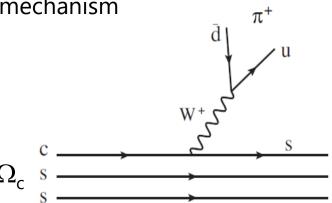
Note, however, that the $\eta\Omega$ channel is required to bind Ω^* state since the diagonal potential of the $K\Xi^*$ channel is zero and hence cannot produce any bound state by itself.

etc.

The $\Omega_c \to \pi^+ \Omega(2012) \to \pi^+ (K^- \Xi^0)$ reaction

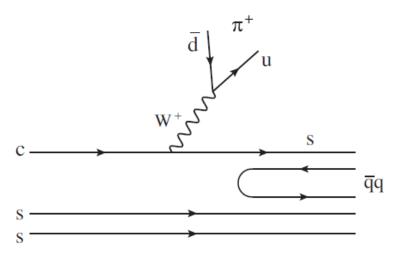
- Belle data in 2021 [PRD104, 052005(2021)] : $\frac{\mathcal{B}(\Omega_c^0 \to \pi^+ \Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to K^- \Xi^0)}{\mathcal{B}(\Omega_c^0 \to \pi^+ K^- \Xi^0)} = (9.6 \pm 3.2 \pm 1.8)\%$
- We study a mechanism for $\Omega_c \to \pi^+\Omega(2012)$ production through an external emission Cabibbo favored weak decay mode, where the $\Omega(2012)$ is dynamically generated from the interaction of $\bar{K}\Xi^*$ and $\eta\Omega$, with $\bar{K}\Xi$ as the main decay channel. N. Ikeno, W. H. Liang, G. Toledo, and E. Oset, PRD 106, 034022 (2022).

Microscopic picture for the weak decay $\Omega_c \to \pi^+ sss$ through external emission mechanism



- ⇒ Our decay channels require three particles in the final state
- ⇒ Hadronization must occur to produce the extra particle.

Hadronization of an ss pair



- Weak interaction vertices:

$$\mathcal{L}_{W,\pi} \sim W^{\mu} \partial_{\mu} \phi$$
. $\mathcal{L}_{\bar{q}Wq} \sim \bar{q}_{\text{fin}} W_{\mu} \gamma^{\mu} (1 - \gamma_5) q_{\text{in}}$

$$V_P = C(q^0 + \vec{\sigma} \cdot \vec{q})$$
. C: unknown constant

$$sss \to \sum_{i} s\bar{q}_{i}q_{i}ss = \sum_{i} P_{3i}q_{i}ss$$

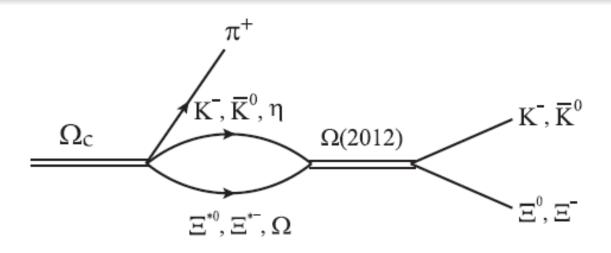
where
$$P \equiv \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} & K^0 \\ K^- & \bar{K}^0 & -\frac{\eta}{\sqrt{3}} + \sqrt{\frac{2}{3}}\eta' \end{pmatrix}$$

$$sss \rightarrow K^{-}\underline{uss} + \bar{K}^{0}\underline{dss} - \frac{\eta}{\sqrt{3}}\underline{sss}$$

=> We obtain $\bar{K}\Xi^*, \bar{K}\Xi$, $\eta\Omega$

K. Miyahara, et al., PRC95, 035212 (2017):V. R. Debastiani, et al., PRD97, 094035 (2018)

The $\Omega_c \to \pi^+ \Omega(2012) \to \pi^+ (K^- \Xi^0)$ reaction



 π^+ KΞ* and π^+ η Ω are produced

- => KΞ* and $\eta\Omega$ interact and produce $\Omega(2012)$
- => Later $\Omega(2012)$ decays into KΞ

The $\bar{K}\Xi$ mass distribution for Ω_c decay:

$$\frac{d\Gamma_{\text{signal}}}{dM_{\text{inv}}(K^{-}\Xi^{0})} = \frac{1}{(2\pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi} \tilde{p}_{K^{-}} \sum |\bar{t}|^{2},$$

Amplitude t:

$$\begin{split} t &= W(K^-\Xi^{*0})G_{\tilde{K}\Xi^*}(M_{\mathrm{inv}}) \bigg(-\frac{1}{\sqrt{2}} \bigg) \underline{g_{R,\tilde{K}\Xi^*}} \frac{1}{M_{\mathrm{inv}} - M_R + i\frac{\Gamma_R}{2}} \bigg(-\frac{1}{\sqrt{2}} \underline{g_{R,\tilde{K}\Xi}} \bigg) \\ &+ W(\bar{K}^0\Xi^{*-})G_{\tilde{K}\Xi^*}(M_{\mathrm{inv}}) \bigg(-\frac{1}{\sqrt{2}} \bigg) \underline{g_{R,\tilde{K}\Xi^*}} \frac{1}{M_{\mathrm{inv}} - M_R + i\frac{\Gamma_R}{2}} \bigg(-\frac{1}{\sqrt{2}} \underline{g_{R,\tilde{K}\Xi}} \bigg) \end{split}$$

$$p_{\pi^+} = \frac{\lambda^{1/2}(M_{\Omega_c}^2, m_{\pi}^2, M_{\text{inv}}^2(K^-\Xi^0))}{2M_{\Omega_c}}$$

$$\tilde{p}_{K^{-}} = \frac{\lambda^{1/2}(M_{\text{inv}}^{2}(K^{-}\Xi^{0}), m_{K^{-}}^{2}, M_{\Xi^{0}}^{2})}{2M_{\text{inv}}(K^{-}\Xi^{0})}$$

 $+W(\eta\Omega)G_{\eta\Omega}(M_{\rm inv})g_{R,\eta\Omega}\frac{1}{M_{\rm inv}-M_R+i\frac{\Gamma_R}{\bar{c}}}\left(-\frac{1}{\sqrt{2}}g_{R,\bar{K}\Xi}\right)$ R stands for $\Omega(2012)$ resonance

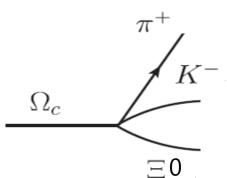
 $g_{R,\bar{K}\Xi^*}, g_{R,\eta\Omega}, g_{R,\bar{K}\Xi}$: Couplings to $\Omega(2012)$

W: Weight for the matrix elements of $\Omega_c \uparrow \uparrow \uparrow$ going to π^+ and the different final states

We use the same values of g, q_{max} obtained before

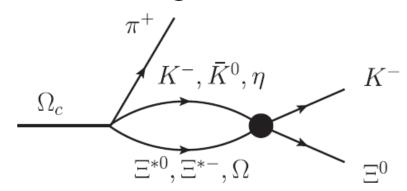
Background for $\Omega_c \to \pi^+ K^- \Xi^0$ without going through the $\Omega(2012)$

(1) Direct reaction:



$$\frac{\mathrm{d}\Gamma_{\mathrm{bac}}^{(1)}}{\mathrm{d}M_{\mathrm{inv}}(K^{-}\Xi^{0})} = \frac{1}{(2\pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi} \tilde{p}_{K^{-}} \sum |\bar{t}_{\mathrm{bac}}^{(1)}|^{2}$$

$$\sum |\bar{t}_{\rm bac}^{(1)}|^2 = C^2 \frac{4}{27} \vec{q}^2. \qquad q = p_{\pi^+} = \frac{\lambda^{1/2} (M_{\Omega_c}^2, m_{\pi}^2, M_{\rm inv}^2(K^-\Xi^0))}{2M_{\Omega_c}}$$



(2) Reaction through intermediate states:
$$\frac{\mathrm{d}\Gamma_{\mathrm{bac}}^{(2)}}{\mathrm{d}M_{\mathrm{inv}}(K^{-}\Xi^{0})} = \frac{1}{(2\pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi^{+}} \tilde{p}_{K^{-}} \sum |\bar{t}_{\mathrm{bac}}^{(2)}|^{2}$$

$$\begin{split} t_{\text{bac}}^{(2)} &= W(K^-\Xi^{*0}) \cdot G_{\bar{K}\Xi^*}(M_{\text{inv}}) \cdot \left(-\frac{1}{\sqrt{2}}\right) \underline{\alpha \vec{p}_{\bar{K}}^2} \left(-\frac{1}{\sqrt{2}}\right) \\ &+ W(\bar{K}^0\Xi^{*-}) \cdot G_{\bar{K}\Xi^*}(M_{\text{inv}}) \cdot \left(-\frac{1}{\sqrt{2}}\right) \underline{\alpha \vec{p}_{\bar{K}}^2} \left(-\frac{1}{\sqrt{2}}\right) \\ &+ W(\eta\Omega) \cdot G_{\eta\Omega}(M_{\text{inv}}) \cdot \underline{\beta \vec{p}_{\bar{K}}^2} \left(-\frac{1}{\sqrt{2}}\right) \end{split}$$

$$V = \begin{pmatrix} 0 & 3F & \alpha q_{
m on}^2 \\ 3F & 0 & \beta q_{
m on}^2 \\ \alpha q_{
m on}^2 & \beta q_{
m on}^2 & 0 \end{pmatrix} \begin{pmatrix} ar{K}\Xi^* \\ \eta\Omega \\ ar{K}\Xi \end{pmatrix} \begin{pmatrix} V_{ar{K}\Xi^* o ar{K}\Xi} = lpha ar{q}_{ar{K}}^2, \\ \eta\Omega \\ ar{K}\Xi \end{pmatrix}$$

 α , β : Potential parameters

We use the same values obtained before

Calculated total $\pi^+K^-\Xi^0$ production

We define ratios:

$$R_{1} \equiv \frac{\Gamma_{\text{bac}}^{(1)}}{\Gamma_{\text{signal}}} = \frac{\Gamma_{\text{bac}}^{(1)}/\Gamma_{\Omega_{c}}}{\Gamma_{\text{signal}}/\Gamma_{\Omega_{c}}} = \frac{\mathcal{B}_{\text{bac}}^{(1)}}{\mathcal{B}_{\text{signal}}} \qquad R_{2} \equiv \frac{\Gamma_{\text{bac}}^{(2)}}{\Gamma_{\text{signal}}} = \frac{\Gamma_{\text{bac}}^{(2)}/\Gamma_{\Omega_{c}}}{\Gamma_{\text{signal}}/\Gamma_{\Omega_{c}}} = \frac{\mathcal{B}_{\text{bac}}^{(2)}}{\mathcal{B}_{\text{signal}}}$$

$$= > \mathcal{B}_{\text{bac}}^{(1)} = R_{1}\mathcal{B}_{\text{signal}} \qquad = > \mathcal{B}_{\text{bac}}^{(2)} = R_{2}\mathcal{B}_{\text{signal}}$$

	R_1	R_2	$R_1 + R_2$
Set 1	0.23	0.16	0.39
Set 2	0.21	0.12	0.33
Set 3	0.21	0.20	0.41
Set 4	0.45	0.17	0.62

Calculated ratios with the parameter sets of g, q_{max} , α , and β , obtained before

N. Ikeno, G. Toledo, E. Oset, PRD(2020) R. Pavao and E. Oset, EPJC78(2018)

• Total $\pi^+K^-\Xi^0$ production stemming from the molecular picture

$$\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{th}} = \mathcal{B}_{\text{signal}} + \mathcal{B}_{\text{bac}}^{(1)} + \mathcal{B}_{\text{bac}}^{(2)} = \mathcal{B}_{\text{signal}}(1 + R_1 + R_2) \qquad \begin{array}{l} \text{<- Unknown constant \mathcal{C} is implicitly included in B_{signal}} \\ \frac{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{th}}}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{exp}}} = \frac{\mathcal{B}_{\text{signal}}}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{exp}}} (1 + R_1 + R_2) = (9.6 \pm 3.2 \pm 1.8)(1 + R_1 + R_2)\% \qquad = 12.2 - 15.7\% \\ \text{With 38\% uncertainty} \\ \text{Ratio measured by Belle} \end{array}$$

- => Based on the molecular picture, we obtain only about 12–20% of the total production with the three modes evaluated to produce $\pi^+K^-\Xi^0$, one resonant and two nonresonant
- There are two other sources we did not consider: $\Omega_c \to \Xi^0 \bar{K}^{*0} \to \Xi^0 K^- \pi^+$ (PDG data) ~85% of the total production $\Omega_c \to \pi^+ \Omega^* \to \pi^+ K^- \Xi^0$ (Quark model)

Summary

- We have studied the molecular picture for the $\Omega(2012)$ state with the coupled channels $\bar{K}\Xi^*,\,\eta\Omega,\,\bar{K}\Xi$
- We also have studied the $\Omega_c \to \pi^+ \Omega(2012) \to \pi^+ K^- \Xi^0$ reaction
- We found that the obtained results are consistent with all Belle results
 - $\Omega(2012)$ mass, width, and the ratio R of the $\Xi \pi K$ width to the ΞK width
 - All three channels account for about (12–20)% of the total $\Omega_c \to \pi^+ K^- \Xi^0$ decay rate
- We should note that the molecular structure of $\Omega(2012)$ is mostly a $\bar{K}\Xi^*$ bound state. However, it requires the interaction with the $\eta\Omega$ channel to bind, while neither the $\bar{K}\Xi^*$ nor the $\eta\Omega$ states would be bound by themselves.
- New information on experimental data is most welcome.

Two other sources we did not consider

$$\Omega_c \to \Xi^0 \bar{K}^{*0} \to \Xi^0 K^- \pi^+$$

 $(\Gamma_{7}, \Gamma_{8} \text{ of PDG data})$

$$\frac{\Gamma_8}{\Gamma_7} = \frac{\mathcal{B}[\Xi^0 \bar{K}^{*0} \to \Xi^0 K^- \pi^+]}{\mathcal{B}[\Xi^0 K^- \pi^+]} = \frac{0.68 \pm 0.16}{1.20 \pm 0.18} = 0.57 \pm 0.16,$$

=> This means that about 60% of the $\Omega_c \to \pi^+ K^- \Xi^0$ decay comes from the $\Xi^0 \, K^{*-} \to \pi^+ K^- \Xi^0$ decay, which is not a part of our calculation

We find a total fraction of

$$0.82 \pm 0.16 \simeq 66 - 98\%$$
.

$$\Omega_c \to \pi^+ \Omega^* \to \pi^+ K^- \Xi^0$$

 Ω^* are any kind of excited $\Omega(sss)$ states

We can rely upon a theoretical Quark model calculation

K. L. Wang, Q. F. Lü, J. J. Xie, and X. H. Zhong, arXiv: 2203.04458

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega(1^2 P_{3/2^-}) \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq 0.08,$$

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega(1^2 P_{1/2^-}) \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq 0.11,$$

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega(1^4 D_{1/2^+}) \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq 0.04$$

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega(1^4 D_{3/2^+}) \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq 0.02$$

Summing all these contributions, we find a fraction of

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega^* \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq \underline{0.25}$$

W: Weight for the matrix elements of $\Omega_c \uparrow \uparrow \uparrow$ going to π^+ and the different final states

$$\begin{split} K^-\Xi^{*0}(S_z=3/2)\colon & W=\frac{1}{\sqrt{3}}C(q^0+q_z),\\ \bar{K}^0\Xi^{*-}(S_z=3/2)\colon & W=\frac{1}{\sqrt{3}}C(q^0+q_z),\\ & \eta\Omega(S_z=3/2)\colon & W=-\frac{1}{\sqrt{3}}C(q^0+q_z),\\ & K^-\Xi^{*0}(S_z=1/2)\colon & W=\frac{1}{3}Cq_+,\\ \bar{K}^0\Xi^{*-}(S_z=1/2)\colon & W=\frac{1}{3}Cq_+,\\ & \eta\Omega(S_z=1/2)\colon & W=-\frac{1}{3}Cq_+,\\ & K^-\Xi^0(S_z=1/2)\colon & W=\frac{\sqrt{2}}{3}Cq_+,\\ & \bar{K}^0\Xi^{-}(S_z=1/2)\colon & W=-\frac{\sqrt{2}}{3}Cq_+,\\ \end{split}$$

$$V_P = C(q^0 + \vec{\sigma} \cdot \vec{q})$$

the matrix element of

$$\vec{\sigma} \cdot \vec{q} = \sigma_+ q_- + \sigma_- q_+ + \sigma_z q_z,$$

$$\sigma_+ = \frac{1}{2} (\sigma_x + i\sigma_y), \qquad \sigma_- = \frac{1}{2} (\sigma_x - i\sigma_y),$$

$$q_+ = q_x + iq_y, \qquad q_- = q_x - iq_y,$$

 q^0 is the energy of the π^+ and q its three-momentum

We can take the z direction in the π^+ direction, and when integrating over the π^+ angles, we get the angle averaged values of q_z^2 , q^0q_z , and $|q_+|^2$,

$$q_z^2 \to \frac{1}{3}\vec{q}^2$$
, $q^0q_z \to 0$, $|q_+|^2 = q_x^2 + q_y^2 \to \frac{2}{3}\vec{q}^2$.

internal emission

We can also have $\bar{K}^0\pi^+\Xi^-$, $\bar{K}^0\pi^+\Xi^{*-}$ production via internal emission, although suppressed by a color factor around 1/3.

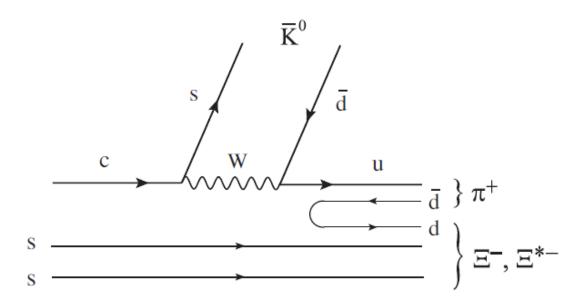


FIG. 4. Mechanism for internal emission for $\bar{K}^0\pi^+\Xi^-$, $\bar{K}^0\pi^+\Xi^{*-}$.

If we look at the $\pi^+K^-\Xi^0$ final state production, we just have an external emission

TABLE I. Values of the parameters q_{max} , α , β and the resulting Γ_R ($R \equiv \Omega(2012)$) for three different sets of Ref. [14] (sets 1–3) and the one of Ref. [11] (set 4).

	Set 1	Set 2	Set 3	Set 4
$q_{\max}(\bar{K}\Xi^*)$ [MeV]	735	775	735	735
$q_{\max}(\eta\Omega)$ [MeV]	735	710	750	735
$\alpha \ [10^{-8} \ \text{MeV}^{-3}]$	-8.7	-8.7	-11.0	4.0
$\beta \ [10^{-8} \ \text{MeV}^{-3}]$	18.3	18.3	20.0	1.5
$g_{R,\bar{K}\Xi^*}$	1.86 - i0.02	1.79 + i0.02	1.88 + i0.04	2.01 + i0.02
$g_{R,\eta\Omega}$	3.52 - i0.46	3.79 - i0.53	3.55 - i0.67	2.84 - i0.01
$g_{R,\bar{K}\Xi}$	-0.42 + i0.12	-0.44 + i0.14	-0.42 + i0.22	-0.29 + i0.04
Γ_R [MeV]	7.3	7.7	8.2	6.24

$$R_{1} \equiv \frac{\Gamma_{\text{bac}}^{(1)}}{\Gamma_{\text{signal}}} = \frac{\Gamma_{\text{bac}}^{(1)}/\Gamma_{\Omega_{c}}}{\Gamma_{\text{signal}}/\Gamma_{\Omega_{c}}} = \frac{\mathcal{B}_{\text{bac}}^{(1)}}{\mathcal{B}_{\text{signal}}} \quad = \Rightarrow \quad \mathcal{B}_{\text{bac}}^{(1)} = R_{1}\mathcal{B}_{\text{signal}} \qquad R_{2} \equiv \frac{\Gamma_{\text{bac}}^{(2)}}{\Gamma_{\text{signal}}} = \frac{\Gamma_{\text{bac}}^{(2)}/\Gamma_{\Omega_{c}}}{\Gamma_{\text{signal}}/\Gamma_{\Omega_{c}}} = \frac{\mathcal{B}_{\text{bac}}^{(2)}}{\mathcal{B}_{\text{signal}}} \quad = \Rightarrow \quad \mathcal{B}_{\text{bac}}^{(2)} = R_{2}\mathcal{B}_{\text{signal}}$$

• Total $\pi^+K^-\Xi^0$ production stemming from the molecular picture

$$\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{th}} = \mathcal{B}_{\text{signal}} + \mathcal{B}_{\text{bac}}^{(1)} + \mathcal{B}_{\text{bac}}^{(2)} = \mathcal{B}_{\text{signal}} (1 + R_1 + R_2)$$

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{th}}}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{exp}}} = \frac{\mathcal{B}_{\text{signal}}}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{exp}}} (1 + R_1 + R_2)$$

Ratio measured by Belle

$$= (9.6 \pm 3.2 \pm 1.8)(1 + R_1 + R_2)\%$$

= 12.2–15.7% with 38% uncertainty

TABLE II. Results for $R_1, R_2, R_1 + R_2$ with different sets of parameters shown in Table I.

	R_1	R_2	$R_1 + R_2$
Set 1	0.23	0.16	0.39
Set 2	0.21	0.12	0.33
Set 3	0.21	0.20	0.41
Set 4	0.45	0.17	0.62