On the *Z_{cs}***(3985) and** *X***(3960) states**

Towards HQSS and SU(3) multiplet descriptions

Miguel Albaladejo (IFIC)

IO MINISTERIO VA DE CIENCIA E INNOVACIÓI

Outline

1 Introduction

2 Interactions [HQSS and SU(3)]

3 X(3960)

HQSS & SU(3) multiplets

5 Z_{cs}(3985) and Z_c(3900)

Introduction			
•			

Quark model in the charmonium sector

- χ_{cl}(1P) well established, "very CQM model" state.
- X(3872) discovered by Belle [PRL,91,262001('03)] (also 2003!)
- $J^{PC} = 1^{++}$ and $\Gamma \simeq 1$ MeV established by LHCb (e.g. [JHEP,08(2020),123])
- χ_{cl}(2P) Not established. Influence of open thresholds? X(3872) a molecular state, 4q,...?
- Z_c/Z_{cs} states have I = 1 or 1/2, clearly "tetraquarks" ($c\bar{c}u\bar{d},...$)
- Many theoretical and lattice and experimental works: can't cite them properly here! (many references in [PR,D106,094002('22)])

Interactions		
•		

Heavy Quark

Physics

HQSS and flavour SU(3) LO lagrangian

- SU(3) light flavour symmetry: $H_a^{(Q)} \sim (Q\bar{u}, Q\bar{d}, Q\bar{s}) \sim (D^0, D^+, D_s^+)$ • HQSS: $H_a^{(Q)} = \frac{1+\dot{\gamma}}{2} \left(P_{a\mu}^{*(Q)} \gamma^{\mu} - P_a^{(Q)} \gamma_5 \right)$ (with $v \cdot P_a^{*(Q)} = 0$) [Grinstein et al., NPB380('22): Alfiky et al., PLB640('06), ...]
- $H\bar{H} \rightarrow H\bar{H}$ LO lagrangian (S-wave contact interactions):

$$\begin{split} \mathcal{L}_{4H} &= \quad \frac{1}{4} \operatorname{Tr} \left[\bar{H}^{(Q)a} H^{(Q)}_b \gamma_\mu \right] \operatorname{Tr} \left[H^{(\bar{Q})c} \bar{H}^{(\bar{Q})}_d \gamma^\mu \right] \left(F_A \, \delta^{\,b}_a \delta^{\,d}_c + F^{\lambda}_A \, \vec{\lambda}^{\,b}_a \cdot \vec{\lambda}^{\,d}_c \right) \\ &+ \quad \frac{1}{4} \operatorname{Tr} \left[\bar{H}^{(Q)a} H^{(Q)}_b \gamma_\mu \gamma_5 \right] \operatorname{Tr} \left[H^{(\bar{Q})c} \bar{H}^{(\bar{Q})}_d \gamma^\mu \gamma_5 \right] \left(F_B \, \delta^{\,b}_a \delta^{\,d}_c + F^{\lambda}_B \, \vec{\lambda}^{\,b}_a \cdot \vec{\lambda}^{\,d}_c \right), \end{split}$$

• Only 4 constants, any linear combination can be used

$$\begin{aligned} \mathcal{C}_{0a} &= F_A + \frac{10F_A^\lambda}{3}, \qquad \mathcal{C}_{1a} = F_A - \frac{2}{3}F_A^\lambda, \\ \mathcal{C}_{0b} &= F_B + \frac{10F_B^\lambda}{3}, \qquad \mathcal{C}_{1b} = F_B - \frac{2}{3}F_B^\lambda. \end{aligned}$$

	X(3960)		
	•		

 $D_s^+ D_s^-$ interaction and $B^+
ightarrow D_s^+ D_s^- K^+$ decay [Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

• Scattering amplitude:
$$T^{-1}(E) = V^{-1} - G(E)$$

$$V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$$

• G(E): loop functions, once-subtracted DR, $G(E_{th}) = G_{\Lambda}(E_{th})$

• Simple production model:

$$T_B(E) = P + PG(E)T(E) = P \frac{1}{1 - VG(E)}$$

•
$$\frac{dI}{dE} = \frac{1}{(2\pi)^3} \frac{\kappa p}{4m_B^2} |T_B(E)|^2$$

	X(3960)		
	•		

 $D_s^+ D_s^-$ interaction and $B^+
ightarrow D_s^+ D_s^- K^+$ decay [Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

• Scattering amplitude: $T^{-1}(E) = V^{-1} - G(E)$

$$V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$$

• G(E): loop functions, once-subtracted DR, $G(E_{th}) = G_{\Lambda}(E_{th})$

Simple production model:

$$T_B(E) = P + PG(E)T(E) = P\frac{1}{1 - VG(E)}$$

•
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \frac{1}{(2\pi)^3} \frac{k\,p}{4m_B^2} \,|T_B(E)|^2$$

- Fit: two solutions (virtual or bound), in both: $M_{X(3960)} = 3928(3) \text{ MeV}$ $2M_{D_s} - M_{X(3960)} = 8(3) \text{ MeV}$
- LHCb: M = 3956(5)(11) MeV, Γ = 43(13)(7) MeV
- [Prelovsek et al., JHEP 06,035('20)]: Bound state B = 6.2^{+2.0}_{-3.8} MeV (cf. also [Bayar, Feijoo, Oset, 2207.08490])

	Vir.	(S-I)	Bou. (S-II)		
	$\Lambda=0.5\text{GeV}$	$\Lambda=1.0\text{GeV}$	$\Lambda=0.5\text{GeV}$	$\Lambda=1.0~\text{GeV}$	
$C_{D_S \overline{D}_S}$ (fm ²)	$-0.74^{+0.04}_{-0.04}$	$-0.46^{+0.02}_{-0.02}$	$-3.36^{+0.56}_{-1.02}$	$-0.91^{+0.05}_{-0.06}$	

	X(3960)		
	•		

 $D_s^+ D_s^-$ interaction and $B^+
ightarrow D_s^+ D_s^- K^+$ decay [Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

• Scattering amplitude: $T^{-1}(E) = V^{-1} - G(E)$

$$V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$$

• G(E): loop functions, once-subtracted DR, $G(E_{th}) = G_{\Lambda}(E_{th})$

Simple production model:

$$T_B(E) = P + PG(E)T(E) = P\frac{1}{1 - VG(E)}$$

•
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \frac{1}{(2\pi)^3} \frac{k p}{4m_B^2} |T_B(E)|^2$$

- Fit: two solutions (virtual or bound), in both: $M_{X(3960)} = 3928(3) \text{ MeV}$ $2M_{D_s} - M_{X(3960)} = 8(3) \text{ MeV}$
- LHCb: M = 3956(5)(11) MeV, Γ = 43(13)(7) MeV
- [Prelovsek et al., JHEP 06,035('20)]: Bound state B = 6.2^{+2.0}_{-3.8} MeV (cf. also [Bayar, Feijoo, Oset, 2207.08490])

	Vir.	(S-I)	Bou. (S-II)		
	$\Lambda=0.5\text{GeV}$	$\Lambda=1.0\text{GeV}$	$\Lambda=0.5\text{GeV}$	$\Lambda=1.0~\text{GeV}$	
$C_{D_S \overline{D}_S}$ (fm ²)	$-0.74^{+0.04}_{-0.04}$	$-0.46^{+0.02}_{-0.02}$	$-3.36^{+0.56}_{-1.02}$	$-0.91^{+0.05}_{-0.06}$	

	HQSS & SU(3) multiplets	
	•00	

Fixing constants

- Lagrangian \mathcal{L} with HQSS and light-flavour SU(3) symmetry has 4 constants (C_{0a} , C_{0b} , C_{1a} , C_{1b})
- Some relations can be independently useful. Some examples:

X(3872) and X₂₊₊

$$\begin{array}{c} \left< D\bar{D}^{*}; \; 0(1^{++}) \right| \; \hat{T} \; \left| D\bar{D}^{*}; \; 0(1^{++}) \right> \\ \left< D^{*}\bar{D}^{*}; \; 0(2^{++}) \right| \; \hat{T} \; \left| D^{*}\bar{D}^{*}; \; 0(2^{++}) \right> \end{array} \right\} = C_{0a} + C_{0b}$$

2 $Z_c, Z'_c, Z_{cs}, Z'_{cs}$

$$\begin{cases} \langle D\bar{D}^{*}; \ 1(1^{+-}) \mid \hat{T} \mid D\bar{D}^{*}; \ 1(1^{+-}) \rangle \\ \langle D_{s}\bar{D}^{*}; \ \frac{1}{2}(1^{+}) \mid \hat{T} \mid D_{s}\bar{D}^{*}; \ \frac{1}{2}(1^{+}) \rangle \\ \langle D^{*}\bar{D}^{*}; \ 1(1^{+-}) \mid \hat{T} \mid D^{*}\bar{D}^{*}; \ 1(1^{+-}) \rangle \\ \langle D^{*}_{s}\bar{D}^{*}; \ \frac{1}{2}(1^{+}) \mid \hat{T} \mid D^{*}_{s}\bar{D}^{*}; \ \frac{1}{2}(1^{+}) \rangle \end{cases} \end{cases} \\ \end{cases} = C_{1\sigma} - C_{1b}$$

	HQSS & SU(3) multiplets	
	000	

Fixing all constants

[Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

• X(3960): fixes $C_{D_s \bar{D}_s} = (C_{0a} + C_{1a})/2$ (as previously seen)

Z_c(3900): fixes C_{1Z} = C_{1a} - C_{1b}
 Assume virtual state M = 3813⁺²⁸/₋₂₁ MeV ([2201.08253; 1512.03638] from a fit to BESIII data)

• X(3872): fixes
$$\begin{cases} C_{0X} = (C_{0a} + C_{0b})/2 \\ C_{1X} = (C_{1a} + C_{1b})/2 \end{cases}$$

Experimental information:

$$\begin{bmatrix} [LHCb, 2204.12597] & R_{X(3872)}^{exp} &= 0.29(4) \\ \begin{bmatrix} [LHCb, PR, D 102, 092005('20)] & B_{X(3872)}^{exp} &= [-150, 0] \text{ keV} \longleftarrow M_{X(3872)}^{exp} = 3871.69^{+0.00}_{-0.04} + 0.05 \text{ MeV} \\ \end{bmatrix}$$

• Theoretically: [0911.4407; 1210.5431; 1504.00861]

$$V = \frac{1}{2} \begin{pmatrix} C_{0X} + C_{1X} & C_{0X} - C_{1X} \\ C_{0X} - C_{1X} & C_{0X} + C_{1X} \end{pmatrix}, \quad T = (\mathbb{I} - VG)^{-1}V.$$

$$R_{X(3872)} = \frac{\hat{\Psi}_{n} - \hat{\Psi}_{c}}{\hat{\Psi}_{n} + \hat{\Psi}_{c}}, \quad \frac{\hat{\Psi}_{n}}{\hat{\Psi}_{c}} = \frac{1 - (2m_{D} + m_{D^{*} -})G_{2}(C_{0X} + C_{1X})}{(2m_{D} + m_{D^{*} -})G_{2}(C_{0X} - C_{1X})} = \frac{(2m_{D}0m_{D^{*}0})G_{1}(C_{0X} - C_{1X})}{1 - (2m_{D}0m_{D^{*}0})G_{1}(C_{0X} + C_{1X})},$$

• SU(3) and HQSS breaking corrections (30%) are taken into account for the LECs

	HQSS & SU(3) multiplets	
	000	

Predictions (complete multiplet): X(3960) as virtual

[Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

	HQSS & SU(3) multiplets	
	000	

Predictions (complete multiplet): X(3960) as virtual

[Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

	HQSS & SU(3) multiplets	
	000	

Predictions (complete multiplet): X(3960) as bound

[Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

	HQSS & SU(3) multiplets	
	000	

Predictions (complete multiplet): X(3960) as bound

[Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

		Z _{cs} (3985) and Z _c (3900)	
		000000	

A closer look into $Z_c(3900)$ and $Z_{cs}(3985)$

[Du, MA, Guo, Nieves, PR,D105,074018('22)]

- $\langle D\bar{D}^{*}; 1(1^{+-}) | \hat{T} | D\bar{D}^{*}; 1(1^{+-}) \rangle = \langle D_{s}\bar{D}^{*}; \frac{1}{2}(1^{+}) | \hat{T} | D_{s}\bar{D}^{*}; \frac{1}{2}(1^{+}) \rangle = C_{1a} C_{1b} \equiv C_{1Z}$
- Constant V and single channel: only virtual or bound states (pole condition $V^{-1} = G$)
- Extension of the previous approach in two directions [MA, Guo, Hidalgo-Duque, Nieves, PL, B755, 337('16)]:

 $\begin{array}{l} \textbf{(1) Coupled channels} \begin{cases} I = 1 & \left(\frac{1}{\sqrt{2}} \left[D\bar{D}^* - D^*\bar{D} \right], J/\psi \pi \right) \\ I = \frac{1}{2} & \left(\frac{1}{\sqrt{2}} \left[D_s\bar{D}^* - D_s^*\bar{D} \right], J/\psi K \right) \end{cases} \text{ (also necessary for } e^+e^- \rightarrow J/\psi\pi\pi \text{ data)} \\ \textbf{(2) Energy dependence} & C_{1Z} \rightarrow C_{1Z} + b \frac{s - E_{\text{th}}^2}{2E_{\text{th}}} \end{cases} \end{cases}$

• Production mechanism (includes triangle singularity!) for Y ightarrow D⁰ $\bar{D}^{*-} \pi^+$

		Z _{cs} (3985) and Z _c (3900)	
		000000	

A closer look into $Z_c(3900)$ and $Z_{cs}(3985)$

[Du, MA, Guo, Nieves, PR,D105,074018('22)]

- $\langle D\bar{D}^{*}; 1(1^{+-}) | \hat{T} | D\bar{D}^{*}; 1(1^{+-}) \rangle = \langle D_{s}\bar{D}^{*}; \frac{1}{2}(1^{+}) | \hat{T} | D_{s}\bar{D}^{*}; \frac{1}{2}(1^{+}) \rangle = C_{1a} C_{1b} \equiv C_{1Z}$
- Constant V and single channel: only virtual or bound states (pole condition $V^{-1} = G$)
- Extension of the previous approach in two directions [MA, Guo, Hidalgo-Duque, Nieves, PL, B755, 337('16)]:

 $\begin{array}{c} \textbf{(1) Coupled channels} \begin{cases} I = 1 & \left(\frac{1}{\sqrt{2}} \left[D\bar{D}^* - D^*\bar{D}\right], J/\psi \pi\right) \\ I = \frac{1}{2} & \left(\frac{1}{\sqrt{2}} \left[D_s\bar{D}^* - D_s^*\bar{D}\right], J/\psi K\right) \end{cases} \text{ (also necessary for } e^+e^- \rightarrow J/\psi\pi\pi \text{ data)} \\ \textbf{(2) Energy dependence} & C_{1Z} \rightarrow C_{1Z} + b \frac{s - E_{th}^2}{2E_{th}} \end{cases} \end{cases}$

• Production mechanism (includes triangle singularity!) for Y \to J/ $\psi\,\pi^+\,\pi^-$

$$\begin{aligned} \overline{|\mathcal{A}_{1}(s,t)|^{2}} &= |\tau(s)|^{2}q_{\pi}^{4}(s) + |\tau(t)|^{2}q_{\pi}^{4}(t) + \frac{3\cos^{2}\theta - 1}{2} \left[\tau(s)\tau(t)^{*} + \tau(s)^{*}\tau(t)\right] q_{\pi}^{2}(s)q_{\pi}^{2}(t) \\ &+ \frac{1}{2} \left\{ |\tau'(s)|^{2}E_{\pi}^{2}(s) + |\tau'(t)|^{2}E_{\pi}^{2}(t) + \left[\tau'(s)^{*}\tau'(t) + \tau'(s)\tau'(t)^{*}\right] E_{\pi}(s) E_{\pi}(t) \right\} \\ &\tau(s) = \sqrt{2}l(s)\mathsf{T}_{12}(s) + \alpha \qquad \tau'(s) = \sqrt{2}l(s)\mathsf{T}_{12}(s) \times (h_{S}/h_{D}) \end{aligned}$$

Fit to data				[Du, MA, Guo, Nieves, PR,D1	105,074018('22)]
Introduction	Interactions O	X(3960) O	HQSS & SU(3) multiplets	Z _{CS} (3985) and Z _C (3900) ○●○○○○○	Conclusions

Fitted data:

- $J/\psi\pi^-$ distribution in $e^+e^-
 ightarrow J/\psi\pi^+\pi^-$ [BESIII, PRL,119('17)]
- D^0D^{*-} distribution in $e^+e^- \rightarrow D^0D^{*-}\pi^+$ [BESIII,PR, D92('15)]
- $e^+e^-
 ightarrow \left(D^{*0}D_s^- + D^0D_s^{*-} \right) K^+$ [BESIII, PRL,126('21)]
- Some production/background/normalization constants are also fitted (not shown here)
- Four schemes:
 - A or B: *b* = 0 or free
 - I or II: $h_s = 0$ or not (D- or S- and D-waves)

Scheme	$D_1 D^* \pi$	$a_2(\mu)$	χ^2/dof	C ₁₂ [fm ²]	C_Z [fm ²]	<i>b</i> [fm ³]
14		-2.5	1.62	0.005(1)	-0.226(10)	0*
	D	-3.0	1.62	0.005(1)	-0.177(6)	0*
ПЛ	S+D	-2.5	1.83	0.006(1)	-0.217(10)	0*
IIA	3+0	-3.0	1.83	0.006(1)	-0.171(6)	0*
IR	Л	-2.5	1.24	0.007(4)	-0.222(6)	-0.447(44)
IB	D	-3.0	1.21	0.008(1)	-0.177(4)	-0.255(30)
	S+D	-2.5	1.37	0.005(1)	-0.203(7)	-0.473(45)
IID		-3.0	1.27	0.005(1)	-0.171(5)	-0.270(30)

		Z _{cs} (3985) and Z _c (3900)	
		000000	

Fit to data (scheme A)

[Du, MA, Guo, Nieves, PR,D105,074018('22)]

		Z _{cs} (3985) and Z _c (3900)	
		000000	

Fit to data (scheme B)

[Du, MA, Guo, Nieves, PR,D105,074018('22)]

		Z _{cs} (3985) and Z _c (3900)	
		000000	

Not possible to distinguish different scenarios in J/ $\psi\pi$ spectrum

- The effect/peak produced by a virtual pole is always at threshold
- The peak of a resonance can be shifted from $\text{Re}\sqrt{s_{\text{pole}}}$
- and in this case the effect is very close to threshold

		Z _{CS} (3985) and Z _C (3900) ○○○○●○○	
()			

 $Z_{cs}^{(*)}$ and $Z_{c}^{(*)}$ poles

[Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

	D D* -	a ()	Z _c [M	eV]	Z _{cs} [M	eV]	Z _c * [M	eV]	Z [*] _{cs} [M	eV]
	$D_1 D \pi$	$a_2(\mu)$	Mass	Г/2	Mass	Г/2	Mass	Г/2	Mass	Γ/2
	-	-2.5	3813 ⁺²¹ -28	vir.	3920 ⁺¹⁸	vir.	3962 ⁺¹⁹	vir.	4069^{+12}_{-16}	vir.
IA	D	-3.0	3812 ⁺²² _26	vir.	3924 ⁺¹⁹	vir.	3967 ⁺¹⁹ _22	vir.	4078 ⁺¹⁷ -13	vir.
	C 1 D	-2.5	3799^{+24}_{-33}	vir.	3907 ⁺²² -31	vir.	3949 ⁺²² -30	vir.	4057^{+20}_{-28}	vir.
IIA	5+D	-3.0	3798^{+25}_{-31}	vir.	3911 ⁺¹⁷ _27	vir.	3955^{+22}_{-27}	vir.	4067 ⁺¹⁹ _25	vir.
	_	-2.5	3897 ⁺⁴	37^{+8}_{-6}	3996 ⁺⁴	37^{+8}_{-6}	4035^{+4}_{-4}	37^{+8}_{-6}	4137^{+4}_{-4}	36^{+7}_{-6}
IB	D	-3.0	3898_5	38^{+10}_{-7}	3996 ⁺⁵	35^{+9}_{-6}	4035_5	34^{+9}_{-6}	4136^{+5}_{-6}	33^{+8}_{-6}
	C D	-2.5	3902 ⁺⁶	38^{+9}_{-6}	4002^{+6}_{-6}	38^{+9}_{-7}	4042_5	38^{+9}_{-7}	4144^{+5}_{-6}	37^{+9}_{-7}
IIB	S+D	-3.0	3902 ⁺⁵	37^{+9}_{-6}	4000^{+5}_{-6}	35^{+8}_{-7}	4039^{+5}_{-6}	35^{+8}_{-6}	4140^{+5}_{-6}	33^{+8}_{-6}

- [Yang et al., PR,D103('21)] (Z_{cs} and distribution)
- Ilkeno, Molina, Oset, PL,B814('21)] (Z_{cs} threshold effect)
- [JPAC, PL,B772('17)] Several possibilities for Z_c

- Both schemes (IB and IIB)
- Including SU(3) breaking effects

 - DC			
		0000000	
		Z _{cs} (3985) and Z _c (3900)	

 Z_c and Z_{cs} form a $J^{PC} = 1^{+-}$ octet

[Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)]

 ${\scriptstyle \bullet \ } 3\otimes {\bar 3} = 8 \oplus 1$

- A \overline{Z}_{cs}^{0} has also been found by BESIII [PRL,129,112003('22)]
- In the case of I = 0 one cannot make direct identification (mixing vs. coupled channels)
- [Talk by E. Santopinto, Thursday 4:30pm]

		Z _{cs} (3985) and Z _c (3900)	
		000000	

Photoproduction of Z states would be beneficial...

[JPAC, PR,D106,094009('22)]

- A new method to confirm or discard these new XYZ states
- In principle, photoproduction is free of triangle-singularities that can give rise to resonance-like effects
- Different background, easier to pin down the scattering amplitude part

[[]Talk by A. Hiller-Blin, Tuesday 4:30pm]

		Conclusions
		•

Summary and conclusions

- We have considered D^(*)_(s) D^(*)_(s) interactions with HQSS and SU(3) light-flavour symmetry.
- The X(3960) structure in LHCb data on $B^+ \rightarrow D_s^+ D_s^- K^+$ can be explained with a bound or virtual state.
- The experimental information coming from X(3960), X(3872), and (a virtual) $Z_c(3900)$ allows to fix the four constants appearing in the LO lagrangian.
- Predictions are made based on these constants for multiplet partners of these states in other sectors
- Considering a generalization of the interactions, the BESIII data for the Z_c and Z_{cs} states can be well reproduced, being Z_c and Z_{cs} flavour partners within the same octet

On the *Z_{cs}***(3985) and** *X***(3960) states**

Towards HQSS and SU(3) multiplet descriptions

Miguel Albaladejo (IFIC)

IO MINISTERIO VA DE CIENCIA E INNOVACIÓI

$\chi_{c0}(3915)$ and $\chi_{c2}(3930)$?

Results: Fit

• Exp. resolution taken from LHCb ($\delta \simeq 400 \text{ keV}$):

Parameter	$\Lambda = 1.0 \text{GeV}$	$\Lambda=0.5\text{GeV}$
$C_0(\Lambda)$ [fm ²]	-0.7008(22)	-1.5417(121)
$C_1(\Lambda)$ [fm ²]	-0.440(79)	-0.71(27)
β/α	0.228(108)	0.093(79)
χ^2/dof	0.95	0.92

- Good agreement ($\chi^2/dof = \{0.92, 0.95\}$)
- Check: pull of the data seems randomly distributed.
- Statistical uncertainties obtained by MC bootstrap of the data

Spectroscopy

• Bound state pole in T-matrix, det (1 - VG) = 0:

$$T_{ij}(E) = \frac{\widetilde{g}_{i}\widetilde{g}_{j}}{E^{2} - \left(M_{T_{cc}^{+}} - i\Gamma_{T_{cc}^{+}}/2\right)^{2}} + \cdots$$

- Width: $m_{D^*} i \Gamma_{D^*}/2 \Rightarrow M_{T_{cc}^+} i \Gamma_{T_{cc}^+}/2$
- Pole position (wrt $D^{*+}D^0$ threshold):

Λ (GeV)	$\delta M_{T_{cc}^+}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
1.0	-357(29)	77(1)
0.5	-356(29)	78(1)

Good agreement with LHCb determination:

	$\delta {\sf M}_{{\sf T}^+_{\sf cc}}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
[2109.01038]	-273(61)	410(165)
[2109.01056]	-360(40)	48(2)

- Our width is somewhat larger than the ~ 50 keV obtained by LHCb and [Feijoo et al., 2108.02730], [Ling et al., 2108.00947].
- [Du et al., 2110.13765]: $\Gamma_{T_{cc}^+}$ depending on the model used.

 Results similar to [LHCb, 2109.0156] (top) and [Feijoo et al., 2108.02730; Du et al., 2110.13765] (bottom).

Molecular state?

• Weinberg compositeness [Weinberg, PR,137,B672('65)]: $P = 1 - Z \simeq \frac{\mu^2 g^2}{2\pi \gamma_B} = -g^2 G'(E_B)$

• We get $P_{D^{*+}D^{0}} = 0.78(5)(2)$, $P_{D^{*0}D^{+}} = 0.22(5)(2) \rightarrow P_{I=0} = 1$ purely molecular state (model built-in!)

• Relation to ERE parameters *a*, *r* [Weinberg,PR,137,B672('65)]

$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} + \cdots,$$

$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \cdots.$$

• Single channel & isospin limit:

Λ (GeV)	0.5	1.0
E _B (keV)	833(67)	856(53)
<i>a</i> _{l=0} (fm)	-5.57(25)	-5.18(16)
<i>r</i> _{<i>l</i>=0} (fm)	0.63	1.26

• Average values: $a_{\rm ph} = -5.38(30)$ fm, $r_{\rm ph} = 0.95(32)$ fm, $\gamma_{B_{\rm ph}} = 40.4(1.7)$ MeV.

Molecular state?

- Weinberg compositeness [Weinberg, PR,137,B672('65)]: $P = 1 Z \simeq \frac{\mu^2 g^2}{2\pi \gamma_B} = -g^2 G'(E_B)$
- We get $P_{D^{*+}D^{0}} = 0.78(5)(2)$, $P_{D^{*0}D^{+}} = 0.22(5)(2) \rightarrow P_{l=0} = 1$ purely molecular state (model built-in!)
- Relation to ERE parameters a, r [Weinberg, PR, 137, B672('65)] + [MA, Nieves, EPJ, C82, 724('22)]

$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} - 2\delta r \left(\frac{1-Z}{2-Z}\right)^2 + \cdots$$
$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \delta r + \cdots$$

Single channel & isospin limit:

Λ (GeV)	0.5	1.0
E _B (keV)	833(67)	856(53)
<i>a</i> _{l=0} (fm)	-5.57(25)	-5.18(16)
<i>r</i> _{<i>l</i>=0} (fm)	0.63	1.26

• Average values: $a_{ph} = -5.38(30)$ fm, $r_{ph} = 0.95(32)$ fm, $\gamma_{Bph} = 40.4(1.7)$ MeV. Minimum at $\delta r \simeq r_{ph} \simeq 1$ fm

HQSS partner

- Heavy-Quark Spin Symmetry (HQSS) predicts that heavy-meson interactions are independent of the heavy-quark spin in the limit $m_Q \rightarrow \infty$.
- Relation between $D^*D^* \rightarrow D^*D^*$ and $D^*D \rightarrow D^*D$ amplitudes.
- The interaction kernels of the $I(J^{P}) D^{*}D^{*}$ systems are related to those of the $D^{*}D$ ones as:

$$\begin{split} & \langle D^*D^*, \, 0(1^+) \; \left| \hat{V} \right| \; D^*D^*, \, 0(1^+) \rangle = \langle D^*D, \; 0(1^+) \; \left| \hat{V} \right| \; D^*D, \; 0(1^+) \rangle = V_0 \; , \\ & \langle D^*D^*, \, 1(2^+) \; \left| \hat{V} \right| \; D^*D^*, \; 1(2^+) \rangle = \langle D^*D, \; 1(1^+) \; \left| \hat{V} \right| \; D^*D, \; 1(1^+) \rangle = V_1 \; . \end{split}$$

• We predict the existence of T_{cc}^{++} , a D^*D^* molecular state, HQSS partner of T_{cc}^+ , with a binding energy (wrt the different D^*D^* thresholds) of 1.1–1.5 MeV.

	$\delta M_{T_{cc}^*}$ (keV)			
	Isoscalar	solution	Isovector solution	
	$\Lambda = 1.0 \text{GeV}$	$\Lambda=0.5\text{GeV}$	$\Lambda = 1.0 \text{GeV}$	$\Lambda=0.5\text{GeV}$
D*+D*+			-1580(71)	—1156(79)
$D^{*+}D^{*0}$	—1561(71)	—1148(79)	—1561(71)	—1148(79)
D*0D*0			-1543(71)	-1140(79)

- Similar predictions are obtained in a later work [Dai et al., PR,D105,016029('22)]
- Previous works predicting D^*D^* states: [Molina et al., PR,D82,014010('10); Liu et al., PR,D99,094018('19)].