Towards the measurement of electromagnetic dipole moments of strange and charm baryons at LHC

Giorgia Tonani, **INFN and Milano University IFIC and Valencia University**

Baryons 2022 - International Conference on the Structure of Baryons, 7-11 November 9th November 2022

Istituto Nazionale di Fisica Nucleare

Electromagnetic dipole moments: what? why?

Static property of particles

In a quantum system, for spin ½ particles:

• Electric dipole moment (EDM)

 $\boldsymbol{\delta} = \frac{1}{2} d\mu_B \mathbf{P}$

• Magnetic dipole moment (MDM)

$$\boldsymbol{\mu} = \frac{1}{2}g\mu_B \mathbf{P}$$

with the spin polarization vector:

$$\mathbf{P} = 2 < \mathbf{S} > /\hbar$$

Electromagnetic dipole moments: what? why?

Static property of particles

In a quantum system, for spin $\frac{1}{2}$ particles:

• Electric dipole moment (EDM)

 $\boldsymbol{\delta} = \frac{1}{2} d\mu_B \mathbf{P}$

• Magnetic dipole moment (MDM)

$$\mu = \frac{1}{2}g\mu_B \mathbf{P}$$

with the spin polarization vector:

$$\mathbf{P} = 2 < \mathbf{S} > /\hbar$$

Electromagnetic dipole moments: what? why?

Static property of particles

In a quantum system, for spin $\frac{1}{2}$ particles:

• Electric dipole moment (EDM)

 $\boldsymbol{\delta} = \frac{1}{2} d\mu_B \mathbf{P}$

• Magnetic dipole moment (MDM)

$$\mu = \frac{1}{2}g\mu_B \mathbf{P}$$

with the spin polarization vector:

$$\mathbf{P} = 2 < \mathbf{S} > /\hbar$$

[1] Phys. Lett. B291 (1992) 293 Giorgia Tonani

P, T
$$H = -\delta \cdot E - \mu \cdot B$$

 $H = +\delta \cdot E - \mu \cdot B$

- EDM violates T and P → CP violation via CPT theorem
- SM prediction (from neutron EDM): EDM < 10⁻²⁶ e cm [1]→ sensitive to physics Beyond the Standard Model at the current experimental sensitivity
- MDM measurement of particle and anti-particle -> CPT invariance test
- MDM measurement → experimental test of low-energy
 QCD models, related to non-perturbative QCD
 dynamics + sensitive to internal baryon dynamics

■ SM-CKM ■ SM-Θ ■ <d^(expected) ■ <d^(meas)

[1] J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501

[2] CERN-PBC-REPORT-2018-008

Giorgia Tonani

SM-CKM = SM-O

[1] J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501

[2] CERN-PBC-REPORT-2018-008

Giorgia Tonani

[1] J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501 [2] CERN-PBC-REPORT-2018-008

Giorgia Tonani

Polarization precession in electromagnetic field: Λ at LHCb experiment

Giorgia Tonani

Baryons 2022, 7-11 november

Polarization precession in electromagnetic field: Λ at LHCb experiment

Giorgia Tonani

Baryons 2022, 7-11 november

Polarization precession in electromagnetic field: Λ at LHCb experiment

Giorgia Tonani

Baryons 2022, 7-11 november

Giorgia Tonani

Polarization precession in electromagnetic field of LHCb experiment

Electromagnetic dipole moments: how? Final polarization P_f

 Most challenging part: never performed a physics measurement at LHCb with particles decaying at the end of the magnetic field, between about 6 and 8 m after production (poor resolution)

 Reconstruction feasibility demonstrated (LHCb-DP-2022-001 paper shortly released by LHCb)

Next step: polarization and first electromagnetic dipole moments **measurements**

Giorgia Tonani

Baryons 2022, 7-11 november

Very short-lived particles (~ 5 cm) → need large EM field in small space (~ 10³ T)

Bent crystals:

- Electric field between atomic planes E
 ≈ 1 GV/cm
- Incident positively-charged particles can be trapped if their transverse energy is small ⇒ small incident angle w.r.t the crystal planes (few µrad)
- To induce a net EM field, the crystal must be bent ⇒ effective magnetic field of B≈500 T ⇒ spin precession

Giorgia Tonani

charm

Very short-lived particles (~ 5 cm) → need large EM field in small space (~ 10³ T)

Bent crystals:

- Electric field between atomic planes E
 ≈ 1 GV/cm
- Incident positively-charged particles can be trapped if their transverse energy is small ⇒ small incident angle w.r.t the crystal planes (few µrad)
- To induce a net EM field, the crystal must be bent ⇒ effective magnetic field of B≈500 T ⇒ spin precession

[1] Pis'ma Zh. Tekh. Fiz. **5** (1979) 182 [2]J. High Energ. Phys. **2017** (2017) 120

[3] Eur. Phys. J. C (2017) 77:181
[4] Eur. Phys. J. C (2017) 77:828

Giorgia Tonani

charm

Very short-lived particles (~ 5 cm) → need large EM field in small space (~ 10³ T)

Bent crystals:

- Electric field between atomic planes E
 ≈ 1 GV/cm
- Incident positively-charged particles can be trapped if their transverse energy is small ⇒ small incident angle w.r.t the crystal planes (few µrad)
- To induce a net EM field, the crystal must be bent ⇒ effective magnetic field of B≈500 T ⇒ spin precession

$$m{s} pprox s_0 \left(rac{m{d}}{g-2} (\cos \Phi - 1), \ \cos \Phi, \ \sin \Phi
ight) \ , \ \ \Phi pprox rac{m{g}-2}{2} \gamma heta_C pprox \pi$$

Initial polarization (s $_0$) perpendicular to the production plane

[1] Pis'ma Zh. Tekh. Fiz. **5** (1979) 182[2]J. High Energ. Phys. **2017** (2017) 120

[3] Eur. Phys. J. C (2017) 77:181
[4] Eur. Phys. J. C (2017) 77:828

charm

Giorgia Tonani

Proof of principle test at LHC

Giorgia Tonani

Giorgia Tonani

Electromagnetic dipole moments: sensitivity

 Current limit Λ EDM: Fermilab, 1981, fixed target experiment Λ EDM < 1.5 × 10⁻¹⁶ ecm, with 95% C.L.

- Expected improvement Λ EDM: LHCb project, sensitivity reachable σ_δ ≈1.3×10⁻¹⁸ ecm with 50 fb⁻¹ data
- Current measured value Λ MDM: $\mu = 0.613 \pm 0.004 \mu_N$
- Expected improvement Λ MDM: sensitivity reachable $\sigma_{\mu} \approx 10^{-4} \mu_{N}$ with 50 fb⁻¹ data \Rightarrow first CPT test at 10⁻⁴ level with Λ baryons

Giorgia Tonani