

9th November 2022

Overview:

- $> \beta$ -decay correlation coefficients
- > The BRAND experiment
- ➤ Initial phase experimental run at ILL, Grenoble
- ➤ Mott-Polarimeter: Electron detection system
- > Analysis

β -decay correlation coefficients

Differential decay rate of polarised neutron:

Measurement of $\sigma_{\perp} \Rightarrow$ access to coefficients X (= H, L, N, R, S, U, V) which are linear combination of **BSM** - scalar and tensor couplings

p, q: electron & anti-neutrino momenta E_e , E_v : electron & anti-neutrino energy J: neutron polarization σ_{\perp} : transverse component of electron polarization

$$X = X_{SM} + X_{FSI} + C_{ReS} \operatorname{ReS} + C_{ReT} \operatorname{ReT} + C_{ImS} \operatorname{ImS} + C_{ImT} \operatorname{ImT}$$

where,
$$S = \frac{C_S + C_S'}{C_V}$$
, $T = \frac{C_T + C_T'}{C_A}$

Why it is important?

"Search of BSM Physics with transverse electron polarisation"

- Significant improvement of constraints on ReS,
 ReT, ImS, ImT if precision of H, L, N, R, S,
 U, V measurement: 5 x 10⁻⁴
- > Stringent constraints on e.g. Leptoquark exchange model, R-parity violating Minimal Supersymmetric Standard Model (MSSM), and parameters of Effective Field Theories (EFT)

The **BRAND** experiment: Idea

"Simultaneous measurement of 11 correlation coefficients, among them, 5: H, L, S, U and V are never attempted experimentally before."

- ➤ Cold polarised neutron beam
- ➤ 360° coverage of detectors for decay products (electrons and protons)
- **Electron detection system (Mott polarimeter):**
 - 3D-tracking in Multi Wire Drift Chamber (MWDC)
 - Energy measurement (Plastic scintillators)
 - Thin Pb-foil as a Mott scatterer
- > Proton detection system:
 - Acceleration and subsequent conversion of recoil protons into bunches of electrons in a thin LiF foil.
 - Detection of converted electrons in plastic scintillators with SiPM readout.
- **Deacy vertex reconstruction** with proton time of flight (TOF) and reconstructed electron trajectory

Schematic cross-section of the ultimate *BRAND* experimental setup

BRAND-0: The initial phase experiment at ILL, Grenoble

"In Sept-Oct 2021, experiment with the prototype of the *BRAND* apparatus was performed at the cold neutron facility (PF1B) at the Institut Laue-Langevin (ILL), Grenoble."

Guiding coils

Schematic cross-section of the prototype *BRAND* experimental setup

The experimental setup

Mott polarimeter: Electron detection system (*BRAND* prototype experiment)

Analysis:(Electrons)

Direct electrons:

1400

1200

1000

800

600

Data: n-beam+Bkq

Data: Bkg

Data: n-beam

Energy [keV]

(a)

G4: n-beam

1400

Counts 800

600

scintillator: Represents position dependency of the energy measurement on the scintillator surface.

Data: Bkg

1000 1500 2000 2500

Energy [keV]

(b)

Neutron β -decay energy

Gain-map for the back

spectrum and background: (a) energy spectrum

recorded in the back scintillator, identified background spectrum and resulting β spectrum compared with GEANT4 simulations; (b) identified background spectrum with the possible components simulated with GEANT4. (Preliminary!)

Mott scattered electrons:

Track registered in the Mottscintillator after scattering on the Mott scatterer (XY-plane).

Such a tracks leave "V- shaped" trajectories in the chamber.

80

100

120

140

Mott vertex (XY-plane):

The reconstructed vertices shows exactly the position of the Mott foil (XY-plane)

Scattering angle distribution:

Distribution of scattering angle (θ) for the events identified as Mott scattered (XY-plane)

Mott vertex (ZY-plane):

Vertex reconstruction in ZY-plane

The further analysis is ongoing...

Thank you for your attention!