Forum on Tracking Detector Mechanics 2022

FTDM22, 8 - 10 June 2022, Frascati, IT

ALICE ITS3 the first truly cylindrical inner tracker

Cosimo Pastore INFN Bari on behalf of the ALICE Collaboration

FTDM22 | 2022 June 10 | Cosimo Pastore

ALICE Inner Tracking upgrade roadmap

ITS2 for LHC Run 3

Outer Barrel

ITS2 installed and under commissioning

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

ITS3 for LHC Run 4

Can we get closer to the IP? Can we reduce the material budget?

The way: replace detector staves (3 innermost layers) by wafer-scale sensors bent around the beam pipe

Motivation for ITS3

Observations

- » Silicon makes only about 15% of total material
- » Irregularities due to support/cooling and overlap

Improvements

- » Removal of water cooling
 - $\rightarrow \textbf{possible}$ if power consumption stays below 20 mW/cm²
 - \rightarrow move to (low flow) air cooling system
- » <u>Removal circuit board</u> (power+data)
 - $\rightarrow \textbf{possible}$ if integrated on chip
- » Removal of mechanical support
 - \rightarrow **benefit** from increased stiffness by rolling Si wafers

ITS3 detector concept

Key ingredients

» Wafer-scale chips (up to ~28x10 cm), fabricated using stitching

- » Sensor thickness 20-40 μm
- » Chips bent in cylindrical shape at target radii
- » Si MAPS sensor based on 65 nm technology
- » Carbon foam structures
- » Smaller beam pipe diameter and wall thickness (0.14% X₀)

The whole detector will comprise six chips (current ITS IB: 432) and barely anything else!

Key benefits

» Extremely low material budget: 0.02-0.04% X₀
» Homogeneous material distribution: negligible systematic error from material distribution

Beam pipe inner/outer radius (m	ım)	16.0/16.5		
IB Layer Parameters		Layer 0	Layer 1	Layer 2
Radial position (mm)		18.0	24.0	30.0
Length of sensitive area (mm)	300.0		
Pseudo-rapidity coverage		±2.5	±2.3	±2.0
Active-area (cm ²)		610	816	1016
Pixel sensor dimension (mm ²)	280 × 56.5	280 x 75.5	280 x 94
Number of sensors per layer		2		
Pixel size (µm²)		O (10 x 10)		

ITS3 R&D lines

Detector Integration

Tests with wafer-scale dummy chips for mechanical integration

This talk!

Sensor performance

Tests with existing bent ALPIDE chips (ITS2) for (in-beam) performance assessment

Chip design

New, stitched sensor in 65 nm technology on 300 mm wafers

ALPIDE CHIP BENDING

- » MAPS at thickness used in current detectors (~50 μ m) are quite flexible
- » Large benefit from going even a bit thinner: the bending force scales with thickness to the third power
- » The breaking point moves to smaller bending radii when going thinner
- » Project goal thicknesses and desired bending radii are in a "not breaking" regime

6

WAFER-SCALE CHIPS BENDING

- » Developed procedure allows silicon bending in a repeatable reliable way
- » Bending tool: tensioned mylar foil wrapping around a cylindrical mandrel

Vacuum tools to handle and align large-size silicon piece

Detector Integration

Bending tool equipped with: cylindrical mandrel, rotary motor, arm with weight to tension mylar foil, camera for alignment

Bent silicon piece kept in position with Kapton adhesive tape

8

WAFER-SCALE CHIPS BENDING

Bent silicon piece kept in position with Kapton adhesive tape

8

CARBON FOAM SUPPORT STRUCTURE

» Different foams characterised for machinability and thermal properties
» Baseline is ERG DUOCEL_AR, which also features the largest radiation length

Alignment/gluing tools for support structures

ADHESIVE TAPE CUT TOOL

Precision and controlled cut close to the edge of the silicon

LAYER ASSEMBLY PROCEDURE

- » Different options under study (including vacuum clamping)
- » Currently working solution based on segmented mylar foil

Detector Integration

c) glueing of external layer

[mm]

280

280

280

Circ.

[mm]

56.5

74.4

93.2

13

Th.

footprint effect + bending between wedges

Carbon foam wedges + fleece (to reduce glue)

Layer 2

Tomography VS CAD model

Non –cylindricity \rightarrow

Optimize wedge geometry

From Engineering model1 → Engineering model2

TOWARD FIRST WORKING LARGE DIMENSION SENSOR

- » Super-ALPIDE
 - 18 not diced ALPIDE chips
 - dimensions close to the ones for L0 sensor
- » Goals
 - verify bending tools for large-size working chips
 - verify mechanical support alignment tools
 - develop wire-bonding over bent surface tools
 - develop first bent flex prototype (for powering and data streaming)
 - assemble first working large dimension bent sensor

First prototype of bent flex

Wire-bonding is the baseline technique for ITS3 large-area sensors

- Power/data connections on A-side (power on C-side under discussion)
- Expected sensor pad density: down to 60µm-pitch

Wire-bonding systematic studies:

- Pull test force Vs (loop height, loop lenght)
- Different pad size and arrangements
- Different bonding heads/systems
- On flat and bent surface

Tools in Bari and already performed exercise

- The limit to the bonding density (distance between two adjacent bonding feet) is given by the width of the wedge and clamp.
- Usual wedge thickness 100 $\mu m \rightarrow$ In Bari 70 μm (modified for the ITS2 assembly)
- Wire thickness: 25 µm

SUPER-ALPIDE edge-FPC

- Wires length spans between ~1 mm and ~5 mm
 - Distance between ALPIDE mini-pads and FPC border: ~1 mm
 - Distances between FPC border and long pads: ~30 μm 4 mm
- ALPIDE mini-pads dimensions: ~90 μm x 90 μm
- Inter-pad distance, in the denser regions: ~220 μm

18

wire-bonding - 100 µm

- Setup: two single-ALPIDE FPC one facing the other, with a gap similar of ~500 µm
- Two bonding configurations:
 - A) "Deferred" : for two adjacent wires, one foot is on the same long-pad while the other is on a different long-pad
 - B) "Alternating" : for two adjacent wires, both feet are on two different long-pads
- Two inter-pad distances explored:
 - ~100 µm
 - ~80 µm

- With a wire thickness of 25 µm, a foot width of ~40 µm is expected → minimal pad dimension ~80 µm
- ~100 µm inter-pad distance can be easily achieved
- Configuration B allow to double the bonding density, but requires staggered pads

FTDM22 | 2022 June 10 | Cosimo Pastore

TOWARD FIRST WORKING LARGE DIMENSION SENSOR

wire-bonding - 80 µm

- With a wire thickness of 25 $\mu m,$ a foot width of ~40 μm is expected \rightarrow minimal pad dimension ~80 μm
- ~80 µm inter-pad distance achievable
- Configuration B bring to wire distance of ~40 μm

21

ITS3 R&D lines - Super ALPIDE

TOWARD FIRST WORKING LARGE DIMENSION SENSOR

SUMMARY

- » ALICE proposes to build the next-generation inner tracking detector, based on 300 mm wafer-scale, 20-40 µm thin, bent MAPS
- » R&D is making rapid progress on all fronts
 - successful in-beam verification of bent MAPS
 - study sistematically wire-bonding interconnections
 - full-size mechanical mockups
 - first large-size working sensor detector under assembly

