

Mechanical support structure of the CMS Phase-2 Outer Tracker Barrel (TB2S)

 $J.\text{-}L.\ Agram$, on behalf of the CMS Collaboration

Forum on Tracking Detector Mechanics, 8-10 June 2022

Some mechanical aspects of the TB2S

The TB2S support structure preparation

Phase 2 CMS Tracker

- Focus on Outer Tracker
- Comparison with current tracker layout:
 - ~ same volume
 - Less layers, some tilted elements
 - Not only strips sensors

- 2 types of modules:
 - 2S sensors: 2 Strips (5 cm long) in a row
 - PS sensors: Pixel-Strips (1.5-2.4 cm long)

Outer Tracker Support Tube:

<u>TB2S:</u>

- Delimiting the tracker volume
- Closing space for air tightness
- Supporting TB2S and TEDD on 2 rails
- Barrel Timing Layer (BTL) detectors fixed in the inside of the support tube

- Holding 2S modules
- Supporting TBPS on 2 rails. TBPS itself supporting the central section of the inner tracker

TB2S mechanics

- 12 modules per ladder (6 on each sides with overlap)
- 368 ladders on 3 layers and 2 sides

Ladders integration

(USA, Germany)

- 2S silicon sensors
- Mechanical support
- Service + front-end hybrids

(France, India)

- Reception tests (geometrical, functional)
- Mounting
- Ladder tests at +20 and -30°C

Ladders:

(Pakistan)

- Carbon fiber frame
- Modules inserts
- Cooling tube

Integration test on a CO₂ cooled ladder

- In aluminium test-box in cold room at CERN
 - Ladder cooled with CO2
 - Test-box flushed slightly with dry air
- Three functional modules mounted on ladder:
 - 1 irradiated on position 1 and 2 non-irradiated modules
 - Position 1 is particular:
 - overlap of Z+ and Z- ladders -> less space for inserts for cooling contact
 - Thinner and longer inserts at the extremity
- · Heating resistors at the other places
- Test of cooling performance:
 - 16 temperature probes on the irradiated module
 - Monitoring of voltages and currents

cooling tube

Temperature measurements:

- Calibration period with the highest consumption
- Temperature asymmetry due to long inserts (6th cooling point missing)
- Effect mainly on hybrids, much lower on sensor

Variations of CO₂ cooling set value:

No thermal runaway observed below -18°C

Topside Bottomside

• Potential convection contribution

See Lea Stockmeier poster about the integration test

Ladders insertion

Current tracker installation in 2006:

- Dedicated tool for guiding ladder insertion (in preparation)
- Ladders positioned by spheres on their sides inserted in plastics inserts glued on the disks

TB2S wheel preparation

Design, prototyping, construction preparation

(France, CERN)

TB2S wheel design

Elements:

- 4 disks (carbon fiber) for ladders positioning
- Disks linked by inner and outer cylinders (carbon fiber)
- 2 rails in the inside for TPBS supporting
- 4 feet for supporting the wheel on the support tube rails

- Similar structure than for the current TOB (Tracker Outer Barrel)
- Differences with TOB:
 - 3 layers instead of 6
 - Timing Layer detectors between tracker and its support tube
- Equipped TB2S + TBPS + IT load : 1t on 4 feet

Wheel FEA simulation

- Full wheel simulation with final geometry
- Large model with many elements (~2000) and connections (~1000)

40,072 32,058 24,043 16,029 8,0144 9,2733e-

- For disks: using carbon fiber c
- Realistic load case:
 - 150 daN correspond
 - 180 daN of ladders le
 - 570 daN of TBPS + ii up to 0.3mm
 - Waves magnitude up to ~ that does not affect senso
 - Small stress: max. Von Mice and the disks ~350MPa (from tensile test)

max. stress location

Current tracker can be considered as the proof of feasibility \rightarrow avoid a costly full size prototype

Focusing on the particular parts with evolutions.

- In the disks:
 - Closer ladder positions in some layers \rightarrow less material
 - Use of composite with cyanate ester resin instead of epoxy
- Around the feet:
 - Larger distance between rail and wheel \rightarrow reinforced region around the feet due to BTL
 - New geometry of foot + use of Ti for one element

Prototypes tested and comparison made with FEA, for gaining in confidence on the full size wheel predictions.

Disk sub-part prototype

- Disk composition:
 - 2 planes separated by spacers and glued
 - 1 plane : 2mm thick, 12 plies of unidirectional carbon fibers in 4 different directions
- Purpose of prototype:
 - Test of a new composite material (M55J fiber + cyanate ester resin)
 - Check strength of region with few material between ladders
 - Compare with simulation
 - Train with the procedure of gluing (on jig)

- Traction tests:
 - Made at CERN Mechanical and Materials Engineering laboratory
 - Test followed with image correlation technique (spraying painting and following movement of spots) giving a map of displacements/deformations.
- Few cycles up to 250kg (much more than in future structure) in 2 directions
- Vertical position (side of a disk)
 - Max displacement ~0.3mm (measured by optical monitoring). In agreement with FEA predictions.

Colors representing the Y displacement

- Horizontal position (bottom or top of a disk)
 - Displacement ~twice larger than in vertical position as predicted
 - One cycle in focusing on the region with the inserts where the constraints are expected to be the largest.

Measured Y displacement

Deformations from measurements

(only qualitative comparison of deformations)

- Tests conclusions:
 - No break, quality of materials and gluing is good
 - Observed displacements close to FEA predictions -> confidence in FEA for larger pieces
 - Design confirmed

Deformations from FEA

Reinforced region

Cylinder:

- Thickness of 15mm for the outer cylinder
- Honeycomb structure between 2 carbon fiber sheets of 1mm thickness (8 plies)

Reinforcement:

- Due to the Barrel Timing Layer the cylinder is not very close to the support tube
- Fill the distance between cylinder and rail for better maintaining of the foot
- Made of 2 planes in Titanium around the foot shoulder, foam, additional carbon fiber layers, screws to avoid delamination

Reinforced region prototype

- Purpose of prototype:
 - Validate design
 - Test assembly of this more complex part
- Prototype:
 - Flattened design for ease of preparation and testing
 - Mounted on a steel frame
 - Simplified foot in the hub : a rod with same degrees of freedom
 - Produced by a company
- Tested under traction at CERN
 - With optical stereo monitoring

steel frame

- Traction tests:
 - Several cycles of increasing load
 - Measurements made at 500kg
 - Went up to 1t (load of the full barrel tracker on a single foot) ! No break, no noise.
- Observed displacement:

Total displacement

Global displacement due to steel frame elasticity

• Comparison with FEA:

Similar magnitude. Global displacement half than observed. Close value of local displacement.

Total displacement with rigid body motion removed

-

side view: green : standby

position

~2 mm

 red : position at maximum load

Foot prototype

Reminder: fully equipped central tracker ~1t on 4 feet

- Doing a prototype because:
 - New geometry with respect to TOB foot (longer arm)
 - New material: one critical piece in titanium instead of alu
 - Train the people who will do the final pieces (@lab)
 - Test behaviour under traction

• Test:

- Did cycles of load. Went up to 3t without problem (still in elastic regime)
- Displacement <0.2mm under standard load (250kg, on 4 feet). FEA estimations are 0.03mm but without gaps between pieces or plasticisation
- Geometry not optimised in term of material (outside of tracker), preferred strength and safety

Rod Vertical Displacement

Construction process

- Construction on a flat table
 - Serves as jig for ladders positions (plastic inserts) → in a room with air temperature regulation
 - Flat table for disks gluing, cylinders connectors gluing, wheel assembly
 - Adaptation of the flat table used for the current tracker
- Rotation of the structure for loading test on horizontal position

Current tracker construction in 2006:

Outline

• Presented TB2S mechanics

• Design is ready

• Validated with tests on prototypes

• Start the process of elements ordering

Stefan Maier - FTDM 2021

