

Extrusion Deposition Additive Manufacturing (EDAM) of carbon fiber reinforced composite parts and tools for particle detector mechanics

Purdue University – Composites Manufacturing & Simulation Center

Sushrut Karmarkar, Eduardo Barocio, Justin Hicks Jack Gulley, Jack Wheeler, Lucas Richardson, Benjamin Denos, Andreas Jung

June 10, 2022

What structures are we involved with?

HL-LHC CMS Upgrade

Large Support Structures –

- 1. Boundary Tracker Support Tube (BTST)
- 2. Inner Tracker Support Tube (ITST)
- 3. Inner Tracker Service Cylinder Small Structures –
- 1. Detector dees multilayer support structure
- 2. Flat plate stock for Silicon Modules backing / cooling plates

Overview

- Introduction to EDAM
- Material selection and testing for EDAM
 - Radiation testing for degradation
 - Characterization methods and results
 - Material characterization for printing and process performance simulations
- Additive3D printing and process performance simulations
- Case studies
 - Bonding and machining tools for CMS
 - Pre-preg layup tools
 - ITST Inner Track Rails

What is Extrusion Deposition Additive Manufacturing

Feed Stock - Polyphenylene sulfide (PPS)

PURDUE UNIVERSITY

Extrusion Deposition Additive Manufacturing

- Composite Additive Manufacturing Research Instrument (CAMRI) at Purdue
- Fixed single screw extruder configuration
- Numeric controlled print bed
- Printing highly filled thermoplastics
- Characterization/validation tool
- 20 x 20 x 10 inch print volume (0.5 x 0.5 x 0.25 meter)

Feed Stock - Polyphenylene sulfide (PPS)

Thermwood LSAM Research Laboratory at Purdue

- 5 x 10 x 4 feet (1.5m x 3m x 1.2m) print volume
- Print rates up to 200 pounds (90 kg) per hour
- The system has been modified to enable print temperatures of 450°C
- 5 axis LSAT CNC milling machine

. . .

LSAM ADDITIVE PRINTER (10'X5')

Need for simulations and 3D printing for CMS project

1. Large tooling and trimming fixtures needed for assembly, trimming and composite layup

Conventional tooling-

- Heavy
- Lead to higher material loss in CNC machining
- Need to use rectangular blocks to make complex shapes as needed by the CMS project
- Better precision than 3D printed tooling for high temperature cure layup tools

Need for simulations and 3D printing for CMS project

EDAM prototype tooling – Inner Tracker Service Cylinder

EDAM prototype tooling – Inner Tracker Support Tube

Conventional tooling-

- Lighter to handle
- Minimal material loss in CNC machining
- complex shaped can be directly printed as needed by the CMS project
- Lower precision than conventional tooling for layup tools – but still within the required tolerance on service cylinder / ITST (?)

IDEAL FOR ASSEMBLY AND CNC TRIMMING FIXTURES

Finished tool surface coated with mold release

Layup and vacuum bagging

THE R. LOW

Need for simulations and 3D printing for CMS project

2. Material cost and machining time (Tooling comparison provided for Inner Tracker tool)

		Conventional Tooling	PPS + CF material for high temperature CF pre-preg cure (EDAM)	ABS + CF material for tooling and assembly at room temp (EDAM)
1.	Cost per unit weight	\$ 8.5/lb (\$18.7/kg) - sold as blocks of size (1000x500x100mm)	\$ 28/lb (\$61.7/kg)	\$ 15/lb (\$33/kg)
2.	Cost of material needed for the ITST tool	<pre>\$ 2550 (tooling block + adhesive + surface treatment)</pre>	\$ 2800	\$ 1500
3.	Time needed for final tool	~ 50 working hours	~ 60 working hours (15 simulation + 15 design iterations + 30 EDAM and CNC)	~ 30 working hours
4.	Total weight	~ 184 lbs (83.5 kg)	~ 100 lbs (45 kg)	~ 100 lbs (45 kg)

36

Need for simulations and 3D printing for CMS project

- 3. Precisions / tolerances needed for CMS parts we need to understand how the shape change happens
 - Aspect ratios and shapes ITST track long and thin parts lead to high process induced warpage – hence we need to predict it and compensate for this shape

Figure 2.10 Beams printed with neat ABS and 13% by volume of carbon fiber reinforced ABS to demonstrate the role of fiber reinforced composites in the EDAM process [2].

Radiation Resistance

Effect of radiation on –

- Thermal Conductivity
- Elastic modulus
- Poisson's ratio
- Coefficient of thermal expansion (CTE)

Material Characterization

Heat Transfer

- Thermal Conductivity
- Specific Heat
- Emissivity
- Performance at subzero temperatures

Thermo-mechanics

- Crystallization / Melting
- Coefficients of Thermal
 Expansion

Cost

Bonding

Viscoelasticity

Prony Series model

Error in Material Property Value

CTE results – ThermaTech PPS – no significant degradation as f(rad-dose)

Thermal conductivity – ThermaTech PPS – no significant degradation as f(rad-dose)

Thermal conductivity results from Ryan

- <u>https://indico.cern.ch/event/1065348/</u>
- <u>https://www.physics.purdue.edu/cmsfpix/The</u> <u>rmalMeasurements/</u>

This material has thermal conductivity at 4 W/mK in stacking direction and about 13W/mK in print direction, so really useful in Dees where thermal pathway needed between coolant tube to portcards / sensor assembly

Preliminary DMA results for storage modulus

Additive3D printing and process performance simulations

CAMRI – Process Monitoring

Video 10X

LSAM Printing Process

ADDITIVE3D Workflow

ADDITIVE3D Workflow

EDAM System Characterization

Material Characterization

Process and Performance Simulation

Process and Performance Simulation

Case Studies

- 1. Inner Tracker Service Cylinder Stiffener Bonding Jig
- 2. Inner Tracker Service Cylinder Layup Tool
- 3. ITST Center Section Trimming/Machining Tool
- 4. ITST Rails/Tracks
- 5. CMS Inner Track forward pixel Dees perimeter seal

Composites Manufacturing & Simulation Center **

#1 - Inner Tracker Service Cylinder Stiffener Bonding Jig

Process Simulation

Process Simulation Results

Process Simulation Results

10x Deformation & 80x Printing Speed

Process Simulation Results

Deformation - $U_x - (mm)$ Stress - σ_{11} (MPa) S, S11 U, U1 (Avg: 75%) 21.6 15.0 1.1 0.9 12.5 0.6 0.4 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0 -12.5 -15.0 -25.4 0.2 0.0 -0.2 -0.4 -0.6 -0.7 -0.9 -1.1

10x Deformation & 80x Printing Speed

#2 - Inner Tracker Service Cylinder Layup Tool

Nodal Deformation for the Part Performance Analysis in Autoclave

Compensated Tool Surface Generated for Machining the Printed Tool

Finished tool surface coated with mold release

Layup and vacuum bagging

Current Iteration on Service Cylinder Tool – in progress (Fall 2022)

- We have tried to achieve the precision for the service cylinder layup tool using EDAM in the past but failed.
- This time with the better development of the Additive3D simulation code we are going to try to make a 16inch (400 mm) TFPX only prototype for TBPX – TFPX flange mounting as well as Dees mounting practice
- Proof of concept for the EDAM tooling application

Preliminary Simulation Results – Service Cylinder – in progress (Fall 2022)

TIME	X-POS	Y-POS	Z-POS	EXTRUSION STATUS	PRINT COND
sec	mm	mm	mm	ON/OFF	
0	164.28	156.84	0	0	3
0.2	173.45	156.05	0	0	3
0.401	180.79	149.58	0	0	3
0.601	198.13	125.82	0	1	3
0.801	221	101.52	0	1	3
1.002	246.77	80.33	0	1	3
1.202	275.01	62.59	0	1	3
1.402	305.27	48.58	0	1	3
1.603	337.06	38.52	0	1	3
1.803	369.86	32.57	0	1	3
2.003	403.16	30.83	0	1	3
2.204	436.41	33.32	0	1	3

Heat Transfer Analysis

Nodal Temperature in Kelvin

Degree of Crystallization

Deformation Analysis

#3 - ITST Center Section Trimming/Machining Tool

#4 - ITST Rails/Tracks

ITST Center Section Rails / Tracks – small prototypes

ITST Rails/Tracks – Coming up early Fall 2022!

#5 - EDAM for small thermally conductive parts in the Inner Tracker – TFPX scope – Fall 2022

graphite laminate

- Requirement along with stiffness, high thermal conductivity
- Waiting on thermal analysis to see if this lower thermal conductivity is acceptable

	EDAM PPS + graphite	EX1515-K13D2U	
	Low cost	Super Expensive	
	High tooling / CNC time needed	High material wastage	
	Lower in-plane thermal conductivity	Higher in-plane thermal conductivity	
	Higher thickness thermal conductivity	Lower thickness thermal conductivity	
	Survives radiation – 1.2 GRad		
Higher time needed per part		Quicker mass production	

Conclusions

- EDAM is currently being used for machining & trimming fixtures and assembly & bonding jigs, we are exploring the use to layup tooling to reduce overall tooling cost and time and make manufacturing of the tool easy
- For applications to large precision parts like ITST track it is easier to 3D print a stock block and machine the tracks than buy stock material
- EDAM is the future for tooling and assembly applications for composite manufacturing !!

Thank you

 Thank you to Eduardo Barocio and Additive Manufacturing Group at CMSC for providing help with slides.

For those looking at the pdf version of this talk – the videos can be seen at this link - <u>FTDM_2022_EDAMandCMS_SRK</u>

Back Up Slides

- Material Characterization for EDAM process simulation and material card development
- Case study Stringer Geometry for oven cure EDAM tool

Thermal Conductivity

Laser Flash Method

Specific Heat Capacity

Differential Scanning Calorimetry

Emissivity Characterization

Black body emission test

Isothermal blackbody cavity - $\epsilon = 0.92$

Crystallization Kinetic Modeling

Experimental Measurements

Differential Scanning Calorimetry

Crystallization Model Generation

Polymer Melting

Non-isothermal DSC

 $X_m(T,p) = \{1 + (d-1)\exp[-k_{mb}(T-T_c)]\}^{\frac{1}{1-d}}$

Melting and Crystallization Models

Characterization of Welding Times

· · · · · · · · · · · · · · · · · · ·					
CODE	Dwell	Build Platform	G1 (J/m^2)		Dh
CODE	Time (s)	Temperature (°C)	MEAN	STD	Db
DCB - 5	5	215	455.58	71.49	0.91
DCB - 10	10	215	450.16	49.45	0.90
DCB - 20	20	215	433.89	40.85	0.86
DCB - 40	40	215	392.77	33.43	0.78
DCB - 201	10	120	58.74	17.73	0.12
DCB - 202	10	140	211.36	60.70	0.42
DCB - 203	10	250	502.47	45.20	1.00
	CODE DCB - 5 DCB - 10 DCB - 20 DCB - 201 DCB - 201 DCB - 202 DCB - 203	Dwell Time (s) DCB - 5 DCB - 10 DCB - 20 DCB - 40 DCB - 201 DCB - 202 DCB - 201 DCB - 202 DCB - 203 DCB - 203	Dwell Time (s) Build Platform Temperature (°C) DCB - 5 5 DCB - 10 10 DCB - 20 20 DCB - 40 40 DCB - 201 10 DCB - 201 10 DCB - 201 10 DCB - 201 10 DCB - 202 10 DCB - 203 10	Dwell Time (s) Build Platform Temperature (°C) G1 (. MEAN DCB - 5 5 215 455.58 DCB - 10 10 215 450.16 DCB - 20 20 215 433.89 DCB - 40 40 215 392.77 DCB - 201 10 120 58.74 DCB - 202 10 140 211.36 DCB - 203 10 250 502.47	Dwell Time (s) Build Platform Temperature (°C) G1 (J/m^2) DCB - 5 5 215 MEAN STD DCB - 10 10 215 455.58 71.49 DCB - 20 20 215 433.89 40.85 DCB - 40 40 215 392.77 33.43 DCB - 201 10 120 58.74 17.73 DCB - 202 10 140 211.36 60.70 DCB - 203 10 250 502.47 45.20

Temperature History Obtained from Printing Simulation

CTE Characterization

Thermoviscoelasticity

Case Study - Stringer Tool Geometry

Three parts made.

- One machined to Nominal Tool Surface (Printed with Celstran© PPS)
- Two Machined to Compensated Tool Geometry (Printed with Celstran© PPS and Techmer © PPS respectively)

Woven fabric prepreg used to make parts at 250 °F oven cure.

Surface scanned with FARO ScanArm©

Stringer Tool Geometry

Nominal Tool Shape

Compensated Tool Shape printed with Celstran© PPS-CF50-01

Compensated Tool Shape printed with Techmer Electrafil© XT1 3DP

PPS

Maximum Distance: +0.343/	- Maximum Distance:	Maximum Distance:	
0.441 mm	+0.232/-0.483 mm	+0.537/-0.852 mm	
Avg. Dist.: 0.010 mm	Avg. Dist.: 0.002 mm	Avg. Dist.: 0.004 mm	
Std. Dev.: 0.127 mm	Std. Dev.: 0.083 mm	Std. Dev.: 0.167 mm	