Strength Measurement of Tracker Detector Composite and Titanium Structures ITk Global Mechanics Structural Prototypes

M. Janda¹, E. Anderssen², C. Bird², T. Claybaugh², T. Johnson², M. McGee Toledo², G. Vallone²

¹CTU in Prague CZ, ²Lawrence Berkeley National Laboratory

Forum on Tracking Detector Mechanics 2022, INFN, Frascati, Italy

Index

- Introduction
- Mount Pad Set-Up
 - FE Analysis
 - Measurement
- Bracket Set-Up
 - FE Analysis
 - Measurement
- Structure health monitoring
- Conclusion

Introduction

New ATLAS Inner **D**etektor = Inner **T**rakcer

Introduction

Scope of the Experiments

- Validate the FE analysis of these critical components
 - Are our predictions for mechanical stability correct?
- Measure the failure load:
 - Difficult to predict with models this is why we use safety factors...
 - Minimize any risk on the critical components
- Identify measurement locations for Structural Health Monitoring (SHM):
 - The aim is to use strain gauges to monitor loads (and health) of the structure during the ITk assembly:
 - Can we find a measuring spot that can give as a good indication of the load level on these critical components?
 - Can we correlate the measurements with a 'real-time safety margin'?

Mount Pad Test Setup

Approx. mass = 58kg

FE Model Description – Stud Load

0.1600

0.13719 0.11433 0.09146

0.068597 0.045731

0.022866

- Mesh
 - Everything modeled with solid elements
 - Carbon fiber components modeled with ACP Roller Stud Loa otal Deformation
- Boundary conditions:
 - Fixed Supports on the Support Frame
 - Assembly connected with bonded contacts
- Load steps:
 - 1. Load to nominal load (5kN)
 - 2. Cycling around nominal load

Mount Pad Test Set-Up – Stud Load

Sensors installed:

- Dial gauges installed to check against potential displacements of the steel frame
- 3 LVDT to measure the stud displacements in Y (2x) and Z directions
- 1 LVDT to measure the overall motion of the OC
- 1 strain gauges half-bridge on the roller stud
- 1 strain rosette on the mount pad

Differences with the 'designed' set-up

- OC segment is not pinned and bolted to the main frame, only bolted to the main frame
 - Possible motion of the OC segment
 - Easier and faster disassembling of the set-up

9

•

Testing Campaign – Stud Load

- Phase 1 Load up to 1000N.
 - LVDT measuring stud displacement not zeroed.
- Phase 2 Load up to 5000N. Visible motion of the stud during cycling.
 - LVDT measuring stud displacement not zeroed.
- Phase 3 Cycling up to 5000N.

Results (Stud Load) – Cylinder Motion

- Small motion of 0.015mm on the LVDT located radially on the cylinder
 - The displacement remains after the unloading.
 - -> slipping in cylinder fixture.
- Measurement done for one cycle only.

Results (Stud Load) – Stud Displacement

- Total displacement in the test set-up correspond to the displacement predicted by FE analysis error up to 9%.
- Small hysteresis in the system caused by the pressure regulation.

Results (Stud Load) – Stud Strain

- Strain gauges half-bridge (bending) on the roller stud.
- Measured strain follow the slope of the FE strain up to \sim 1.7kN (error up to 5%). •
- Possible source of the observed non-linearity could be change in the position of the force applied on the stud caused by the stud deflection. •

Bracket Test Setup

FE Model Description

- Mesh
 - Everything modeled with solid elements
 - Carbon fiber components modeled with ACP
- Boundary conditions:
 - Fixed Supports on the Support Frame
 - Rest of the assembly connected with frictional contacts, FF=0.1
- Load steps:
 - 1. Bolt pretension
 - 2. Load to nominal load (5kN)
 - 3. Cycling around nominal load
 - 4. Load to failure (20kN)

D: Bracket Test - 20000N Static Structural Time: 2. s Items: 10 of 17 indicated 5/11/2022 2:37 PM

> Plate bolt pretention 3: Lock Bracket bolt pretention 1: Locl Plate bolt pretention 5: Lock

Plate bolt pretention 1: Lock Bolt Pretension: Lock Bracket bolt pretention 2: Loc Jorce 2: 20000 N

Bolt Pretension 4: Lock Bolt Pretension 5: Lock Bolt Pretension 6: Lock

Bracket Test Set-Up

Sensors installed:

- Dial gauges installed to check against potential displacements of the steel frame
- 4 LVDT to measure the bracket displacements in X and Y directions
- 1 LVDT to measure the overall motion of the SB flange
- 2 strain gauges half-bridges on the brackets

Differences with the 'designed' set-up

- OC flanges in steel
 - Impact on deformation is very low and this reduces significantly the cost of the experiment
- Bolts design and material (stainless steel)
 - Yield limit ~1/4 of Titanium grade 5
 - Applied pre-stress is much lower, which could impact stiffness of the measurements
 - Could also impact failure
 - Even if not 'real', is 'conservative'

Testing Campaign

- Phase 1 difficulties in controlling the pressure did not manage to get to the planned load most of the times
 - New pressure sensor was installed to improve the acquisition frequency (first one was going trough a very old digital conditioner)
 - New control procedure devised
- Phase 2 reached Ultimate Load State (Lifting load). Ramps up and down much better controlled now.
- Phase 3 Bracket corners machined. Reached 20 kN. Yield around 12.5 kN.

Results – Vertical Displacements

Test Set-Up FEA

Difference in the stud design

LVDT Vertical

<u>LVDT – Vertical Displacements:</u>

- FE model seem to match the overall non-linear shape
- The initial slope is slightly higher than expected
 - This is not the slope needed for stability
 - There is some slippage at the beginning that is prestress and friction dependent, and bolts are not prestressed at the 'design/FE' level
- The measurements deviate around 7.5 kN
 - Possible plasticization in the studs

18

Bracket 2

Bracket 1

Results – Strain Gauges

Bracket 1

Strain gauges Half bridge

Strain gauges:

- Signals are linear with load
- Half bridge removes thermal effects
- Compared with measured strain, the FEA strain is by 20% higher.

Results – Failure Load

- The system 'yielded' above 12.5 kN, but reached 20 kN (safety factor ~4)
- The failed component is the stud connecting the bracket to the • bracket extension
 - Significant plastic deformation, but still carrying the load ٠
 - Bushing was fine, as all the other components ٠
 - This component is not in the correct material and geometry!
 - Titanium grade V yield is ~4 times higher
 - Design geometry has a larger cross-section

FEA

- Updated analysis performed with correct bolt material
- With conservative material properties model predicts significant plastic strain starting from 12 kN
 - Bolt eqv. stress ~200 MPa, but Titanium grade V has a yield strength of ~880 MPa
 - Still not 'failing' as the bolt hardens

20

08/06/2022

Structural Health Monitoring

- Good sensitivity to applied load: ~150 ($\mu m/m)/kN$
- We expect around 750 $\mu\text{m}/\text{m}$ at the nominal load

٠

- Good sensitivity to applied load: ~34 (μ m/m)/kN
- We expect around 200 μ m/m at the nominal load
- Expected noise in the order of 5 μ m/m (was ~1 μ m/m during measurements)

Conclusion

- Tests were designed for critical ITk OC structure interfaces
- Mount Pad test set-up
 - Stiffness as expected by 9% higher than predicted by FEA
 - Strain as expected
 - by 10% lower than predicted by FEA compared to non-linear behavior observed in measurement
 - less than 5% lower than predicted by FEA compared to linear fit obtained from measured data
 - Slippage in the fixture
 - Second load case and Failure load ongoing
- Bracket test set-up
 - Failure load ~12.5 kN ~1.5 ultimate (with stainless steel bolts)
 - Deflection higher than expected probably bolt geometry.
 - Titanium bolts are being procured, the experiment will be repeated soon
- Structure Health Monitoring
 - Nominal load of 5kN for both interfaces
 - Mount Pad sensitivity: ~150 (μm/m)/kN
 - Bracket sensitivity: ~34 (μm/m)/kN

Backup Slides

Requirement				
Туре	R (um)	Phi (um)	Z (um)	Other
Positioning	Assembly Tolerance			
Short Term Stability	20	2	20	
Medium Term Stability	50	5	50	
RMS Stability	20	2	20	
Gravity sag				2 mm
IRF				<0.5

- Requirements from: *ATU-SYS-ES-0027 Alignment and positioning requirements* (...)
- RMS **stability** requirement (most stringent):
 - Azimuthal: 2 μm
 - Other directions: 20 μm
- Designs with a **vertical sag** lower than **1 mm** provide a margin factor of ~2

Results – Strain Gauges

Strain gauges Half bridge

Strain gauges:

- Signals are linear with load
- Half bridge removes thermal effects
- Good sensitivity to applied load: ~34 (μ m/m)/kN
 - FE prediction was 32 (μ m/m)/kN
 - Expected noise in the order of 5 um/m (was ~1 μm/m during measurements)
 - We expect around 200 um/m at the nominal load
- Promising SHM tool

Results – Horizontal Displacements

LVDT Horizontal

- Something strange in bracket 1 signal
 - Saturates at around 10 kN (in fact we moved it)
 - Then seems to provide random numbers
- Bracket 2 matched up to ~nominal load
- Not clear what happens after more time needed to correctly post-process the data
 - Some measuring blocks unglued during testing
 - Need to check the history with test engineer

Debonding

Mount Pad Test Set-Up

Status:

- Set-up is complete •
- First load cycle performed ٠
- Preliminary post-processing in progress, after sanity checks are passed we will apply the nominal load ٠

FE Analysis - Results

- SHM sensor strategy
 - Bending measurement on the brackets (half-bridge configuration)
 - Sensitivity: 16 (μm/m)/KN x 2 = 32 (μm/m)/KN

28

300.00 (mm)

150.00

225.00

75.00

Testing Campaign – Improvement 1

- Pressure 'control' machine borrowed from superconducting magnets group
 - Usually, they just target a pressure level, and do not care about slowly increasing the load (maybe they should)
 - Pressure levels required are much higher (~10 times)
 - New procedure allows to improve ramp up and down, and to get to the desired load with good precision
 - There is still some 'lag' between the pressure and displacement readings, to be investigated

Testing Campaign – Improvement 2

• Corners re-machined – getting into contact with the flange during loading

Results – Failure Load

Failure load

- The system 'failed' above 15 kN, but reached 20 kN (safety factor ~4)
- Not easy to see on the measurements checks in progress
- The failed component is the stud connecting the bracket to the bracket extension
 - Significant plastic deformation, but still carrying the load
 - Bushing was fine, as all the other components
 - This component is not in the correct material!
 - Titanium grade V yield is ~4 times higher

Results – Failure Load - FE

Time: 12

Failure load

- Updated analysis performed with correct bolt material
- Something strange in the geometry •
 - Model one seem more optimal ٠
- With conservative material properties model predicts significant ٠ plastic strain starting from 12 kN
 - Bolt eqv. stress ~200 MPa, but Titanium grade V has a yield ٠ strength of ~880 MPa
 - Still not 'failing' as the bolt hardens

Mount Pad Frame

Mount Pad Assembly

Status:

- Set-up is complete
- First load cycle performed
- Preliminary post-processing in progress, after sanity checks are passed we will apply the nominal load

