

Penetrating Particle Analyzer

Space-flight readiness assessment of the PAN demonstrator mechanical design

Edoardo Mancini INFN Perugia

Forum on tracking detector mechanics Frascati, 8th of June 2022

The Mechanic Team

- Franck Cadoux responsible of the mechanics University of Geneve
- Lorenzo Mussolin tests University of Perugia
- Edoardo Mancini tests INFN/University of Perugia
- Laurent Nicola mechanical designer University of Geneve
- Sylvain Pampaloni CNC technician University of Geneve

Speaker introduction

Penetrating Particle Analyzer

Research grant - INFN office in Perugia

2nd year PhD student – University of Perugia "Dynamic analysis of space structures"

edoardo.mancini2@studenti.unipg.it

Framework

Penetrating Particle Analyzer

Project: development of a compact particle detector for space missions

Capabilities:

- Detection of highly penetrating cosmic particles (from $100 \frac{MeV}{n}$ to $20 \frac{GeV}{n}$)
- Discernment of positive and negative particles

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862044.

Horizon 2020 European Union Funding for Research & Innovation

The Mechanics of the Experiment

The Updated Mechanics

Working environment

Penetrating Particle Analyzer

Launch associated loads:

- Static acceleration
- Harmonic vibrations
- Random vibration
- Shocks

Causes:

- Rocket vertical motion
- Rocket-air interaction
- Wind
- Rocket engine combustion transient
- Rocket stages separation

Working environment

Penetrating Particle Analyzer

Launch associated loads:

- Static acceleration
- Harmonic vibrations
- Random vibration
- Shocks

Causes:

- Rocket vertical motion
- Rocket-air interaction
- Wind
- Rocket engine combustion transient
- Rocket stages separation

Launch loads – static acceleration

Penetrating Particle Analyzer

- Longitudinal acceleration up to 4/5 g
- Lateral acceleartion less than 1 g

Figure 3.2.1.a – Typical longitudinal static acceleration

Source: Ariane 5 UM Microsoft Word - MUA5_5_1_INTRO.doc (arianespace.com)

Launch loads – vibrations

Source: Ariane 5 UM Microsoft Word - MUA5 5 1 INTRO.doc (arianespace.com)

Direction	Frequency band (Hz)	Sine amplitude (g)
Longitudinal	2 - 50	1.0
Longitudinai	50 - 100	0.8
Lateral	2 - 25	0.8
	25 - 100	0.6

Launch loads – shocks

Penetrating Particle Analyzer

Figure 3.2.6.a Envelope shock spectrum for clampband release at spacecraft interface and for fairing and L/V stage separation events

Source: Ariane 5 UM Microsoft Word - MUA5_5_1_INTRO.doc (arianespace.com

Working environment

Penetrating Particle Analyzer

On-orbit/operational loads:

- Thermal cycles
- Radiation
- Outgassing

Causes:

- Earth shadowing, sun and umbra phases
- Distance from the boundary of the magenetosphere
- Absence of air

Working environment

Penetrating Particle Analyzer

On-orbit/operational loads:

- Thermal cycles
- Radiation
- Outgassing

Causes:

- Earth shadowing, sun and umbra phases
- Distance from the boundary of the magenetosphere
- Absence of air

International Space Station (ISS)

- Orbit periond ~ 90 min (1.5 hrs)
- Max T (exposed to the sun) ~ 120 $^\circ\text{C}$
 - Min T (shadow) ~ -150 °C

SERMS Laboratories

Penetrating Particle Analyzer

Vibration benches:

- Shaker 3 kN INFN
- Shaker 10 kN University of Perugia
 Shaker 49.5 kN SERMS s.r.l.
- Slip table (2.7 x 2.7 m^2) University of Perugia

Shock facilities:

- Air cannon SERMS s.r.l.
- **Climate and Vacuum:**
- Thermo-vacuum chamber φ2.1 m x
 2.1 m UniPg
- Climate chambers UniPg

SERMS Lab: synergic collaboration of the INFN, the UniPg and the SERMS s.r.l

Mechanical tests - SUT

Penetrating Particle Analyzer

Components:

- x2 PAN Strip-X boards
- x1 PAN Strip-Y board

- x1 Support frame

Mechanical tests – Monitoring 1/4

Penetrating Particle Analyzer

Monitoring:

- Laser interferometer (vibration Z)
- Accelerometers (vibration Z, X and pyroshock)

Mechanical tests – Monitoring 2/4

Mechanical tests – Monitoring 3/4

Mechanical tests – Monitoring 4/4

Sine sweep

Random

Mechanical tests – vibrations X

Penetrating Particle Analyzer

Resonance search Z1

Sine sweep (SWP)			
Frequency [Hz]	Level		
5-20	9.67 mm (0-pk)		
20-100	15.6 g		
Sweep rate: 2 oct/min			

Random vibration (RNDM)			
Level			
+3 dB/oct	dB/oct		
100-600 0.1 g ² /Hz			
-5 db/oct	Axis X		
Overall: 10.22 g _{rms}			
Duration: 2 min			
	ation (RNDLevel+3 dB/oct0.1 g²/Hz-5 db/oct22 g _{rms} 2 min		

Mechanical tests – Shock in Z - 1/3

Superimposition of resonance searches - transmissibility

Inspection after mechanical tests

Penetrating Particle Analyzer

The optical test showed no signs of failure

Experiment vs Model

- surrounding peaks
- Better results obtained considering _____ only the point on the left

peak freq2 = 724.0

csi = 0.024861878453038673

csi = 0.027624309392265192

peak freq2 = 724.0

Penetrating Particle Analyzer

Modal analysis

FRF - Experimental vs Simulate

Frequency [Hz]

Exctraction of the modal displacement on some nodes of interest

FRF generation

Output PSD -> preliminary structural analysis

unipa

A.D. 1308

FRF exp. Vs FRF simulation

PAN_

Test by analysis

Conclusions and prospects

Penetrating Particle Analyzer

• Conclusions:

- The object is suitable for space-flight from a mechanical point of view
- Either the silicon and the micro-bonds survived the mechanical vibrations and pyro-shock tests

• Prospects:

- Mechanical test to determine the properties of silicon detectors
- Thermal test to verify the capability of the object to withstand thermal cycles (CTE mismatch test)

Penetrating Particle Analyzer

Thanks for the attention

Penetrating Particle Analyzer

Backup slides

Pull test micro-bonds

Penetrating Particle Analyzer

• Pull force: 7 g