Forum on tracking detector mechanics Frascati, 08/06/2022

On the mechanical design of the SCD detector for the HERD experiment

"AMS-02 UTTPS: qualification and performance studies"

e-mail: lorenzo.mussolin@unipg.it

Speaker introduction

Lorenzo Mussolin

Fellow researcher at University of Perugia

Ph.D. in Physics - University of Perugia

A.D. 1308 uni

UNIVERSITÀ DEGLI STUDI **DI PERUGIA**

- HERD experiment introduction
- Environmental design constraints for space experiments
- HERD's main components overview
- Silicon Charge Detector (SCD) mechanical design
- Next steps and conclusions

Summary

High Energy Radiation Detector (HERD)

- Part of the Chinese's "Cosmic Lighthouse" Program"
- Hosted on the Chinese Space Station "Tiangong"
- Launch and installation planned for 2027
- Experiment duration > 10 years
- Project is between phase A and B

The HERD experiment

The HERD collaboration

Chinese institutions

Institute of High Energy Physics, Purple Mountain Observatory, Xi'an Institute of Optical and Precision Mechanics, University of Science and Technology of China, Nanjing University, Peking University, Yunnan University, China University of Geosciences, Ningbo University, Guangxi University

International institutions

- Italy: Università di Pisa/INFN, University of Florence/INFN, **University of Perugia/INFN**, University of Bari/INFN, University of Salento/INFN-Lecce, University of Pavia/INFN, **GSSI/INFN**
- Spain: CIEMAT
- Switzerland: University of Geneva

The HERD experiment

Science Goals

- Dark Matter: better statistical measurements of e/γ @ 0.1-10 TeV
- Origin of Galactic CRs: better spectral and composition measurements of CRs from 30 GeV to PeV with large geometrical factor
- Additional science: γ-ray astronomy, monitoring of GRBs, microquasars, Blazars and other transients, down to ~1 GeV for γ -rays

The HERD experiment

HERD operating environment

- Mission lifetime: from 2025 to 2035+
- Orbital altitude: 350 450 km
- Periapsis altitude: 389.5 km
- Apoapsis altitude: 395 km
- Orbital inclination: 41 43 deg
- Orbital period: 92.2 minutes

Mechanical stresses at launch:

- Static acceleration
- Random vibration
- Sinusoidal vibration
- Shock and pyroshock

Careful design and material choice to ensure highest reliability

Space environment

Life in space:

• Thermal stresses (seasonal, day/night effects) Vacuum (outgassing) Radiation

Electromagnetic compatibility:

• EM noise emission and immunity compliance

Space enviro	Space	enviro	ľ
---------------------	-------	--------	---

Static Loads	Value	Notes
Along axis	7.5 g	
Lateral	3.7 g	Two perpendicular directions
Loading rate	≤ 0.5 g/s	
Hold time	2min	Maximum overload point

Shock		Value		
		Frequency (Hz)		
		100-650	650-3000	Р
Acceleration	Qualification level	8 dB/oct	800g	d
	Acceptance level	8 dB/oct	400g	Т
	Test direction Three axial		axial	a
Hold time		No more than 20ms		H
Number of	Qualification level	Three times per axis		e
tests	Acceptance level	Once per axis		L

Load

ower nsity

tal F cele

old ti ery

nment - Mechanical loads

Sinusoidal vibration		Value Frequency (Hz)					
		Amplitude	Qualification level	22 mm	5.4 g	19.6 g	8.
Acceptance level	14.7 mm		3.6 g	13 g	5.		
Load sweep rate	Qualification level	2 oct/min					
	Acceptance level	4 oct/min					
Loading dir	Dading direction Three ax		e axial				

Random Vibration		Value Frequency (Hz)				
		ower spectral nsity	Qualification level	6 dB/oct	0.4 g²/Hz	-9 dB/
Acceptance level	6 dB/oct		0.16 g²/Hz	-9 dB/		
tal RMS celeration	Qualification level	19.6 grms				
	Acceptance level	12.4 grms				
old time of ery direction	Qualification level	180 s				
	Acceptance level	60 s				
ading direction		Three axial				

08/06/2022

08/06/2022

Forum on tracking detector mechanics 2022

SERMS Laboratory

11

Space environment - Mechanical loads

Electrodynamic shaker

- Frequency range: 5 3000 Hz
- Force: 49.5 kN
- Max acceleration: 100 g
- Max velocity: 2 m/s
- Max displacement: 54 mm_{p-p}

Pyroshock simulator

- Frequency range: 0.1 10 kHz typ.
- Max SRS acceleration: 12000 g \bullet

Space environment - Thermal loads

Thermal vacuum chamber

- Dimensions: $2.1 \times 2.1 \text{ m}^2$ (Lx φ)
- P < 10-5 mbar
- -70 °C < T < 125 °C
- Thermal fluxes recreated via radiation or conduction

Simulation of orbital extreme condition and particular operative conditions

HERD in numbers:

The HERD experiment

Calorimeter (CALO)

- Octogonal prism made of LYSO crystals
- Energy measurement + e/p separation

Flber Tracker (FIT)

Track reconstruction

Plastic Scintillator Detector (PSD)

- Charged particles + gamma trigger
- Charge measurement

Silicon Charge Detector (SCD)

- Single sided Silicon Strip Detectors
- Charge measurement

The HERD detectors

Silicon Charge Detector (SCD)

Preliminary design:

- Single sided silicon strip detector (SSD)
- Two mechanical planes per SCD Tray 1 lacksquare
- Four silicon layers per mechanical plane \bullet
- 15x10 silicons per layer on side SCD Tray 2 18x18 silicons per layer on top SCD
- Total of 1200 silicon per side SCD ulletTotal of 2592 silicons on top SCD
- Grand total of 3792 silicons

Debris Shield .1*X* L2y<u>.3x</u> L4y **L5x** L6y **L7***x* **L8***y*

Silicon Charge Detector (SCD)

SSD: 100x100 mm² **Side panel: 1.6 x 1.1 m² Top panel: 1.9 x 1.9 m²**

X

17

Silicon Charge Detector (SCD)

Mechanical structure - Overview

Composition:

- Overall thickness for side panels: 40 mm
- **Tubular structure as mechanical panel frame** ullet
- Central core 38 mm thick
 - Aluminum HC
 - CF Isogrid/orthogrid
- Top and bottom skins 1mm thick M55J

Scope:

- Withstand mechanical loads at launch \bullet
- Thermal stability on orbit ullet
- **Reduced water absorption/desorption**

Mechanical structure - Frame

 Three types (side panel short + long, top panel) Assembly performed by glueing

• Tubular structure as mechanical panel frame

Mechanical structure - Frame

Mechanical structure - Core

Aluminum honeycomb

- Hexcell CR-III-1/4-5052-2.3P
- Space grade HC
- Density ~ 38 kg/m³
- Heritage from several experiments

CF orthogrid

- No CTE mismatch
- More thermal stability
- M55J fiber walls
- Better for GEANT4 simulation

Mechanical structure - Orthogrid

- Mechanical FEA to simulate effect of different cores
- Design parameters:
 - 1st resonant frequency
 - Overall mass
- Comparison of several orthogrid topologies to HC

Tabular Data					
	Mode	🔽 Fr			
1	1.	157.99			
2	2.	212.98			
3	3.	273.4			
4	4.	319.32			
5	5.	457.6			
6	6.	509.14			
7	7.	519.79			
8	8.	650.33			
9	9.	745.8			
10	10.	815.26			

Mechanical structure - Orthogrid

- Two detecting layers per side (X+Y)
- Electronics on same side for both detected coordinates
- Each layer separated by Airex-CF spacers
- High mechanical stability required

Silicon detector layers

Silicon sensors' spacer

- Heritage from previous experiments on

Detecting layer

Ladder Back Bone (LBB)

L-x

08/06/2022

Ladder Back Bone (LBB)

Next steps:

- Material samples characterisation and comparison with FEA
- Frame sample production and dynamic characterisation
- Production and testing of quarter side plane prototype
- Production, testing and comparisons of different core materials and topologies
- Dynamic characterisation of Airex spacers with silicon dummy sensors

Next steps and conclusions

nanks for your attention!

