Updates on an Advanced Radiation Dose Estimation Tool for the Decommissioning of High Energy Physics Experiments

M.R. Jäkel¹, K. Lohwasser², L. R. Montana Gonzalez², K.L. Veale¹,

1) CERN

2) University of Sheffield

Forum on Tracking Detector Mechanics 2022, Frascati LNF

EP-DT Detector Technologies

Overview

The need for a (better) Dose Estimation System

- Previous experience in preparing dose estimations for the DIMR
- Concept of a novel Dose Estimation System
 - Based on existing CERN standards & commercial solutions

First Experience with the Dose Estimation Tool

- Planning for ATLAS Inner Detector Decommissioning
- Re-Implementation and Improvements (v2)
 - Making the tool better maintainable and improve functionality

Outlook

 Adaptation for other use cases and considerations for higher radiation environments

Why we need a (better) Dose Estimation Tool?

Work in Radiation Environment

- Any service work or de-installation of tracking detector components after their exposure to accelerator beams will have to be carried out in an radiation environment due to the possible activation of the components
- Work dose planning needed for individual RP assessment according to CERN ALARA rule - long, complex and/or high dose rate interventions [EDMS 1751123 Section 5.1, see backup slides]
 - DIMR included into the IMPACT declaration for your work (Dossier d'Intervention en Milieu Radioactif)
 - Description of the work, the duration, possible contamination due to cutting/grinding of activated components...
 - Dose planning needed for people involved in the work, both each individual dose and the collective dose for the whole project.
- FLUKA simulations of radiation environment are provided by HSE-RP
- Position of people and duration of tasks need to be known !
 - In case of a non-uniform radiation fields, this can be hard to determine correctly

ALARA Classification (CERN)

Individual dose equiv. Collective dose equiv.			Level 1	100 μSv 500 μSv	Level	$\begin{array}{c c} 1 \text{ mSv} \\ \hline 5 \text{ mSv} \\ \end{array}$	Level 3		
Ambient dose equivalent rate Airborne activity in CA Surface contamination in CS			Level 1	50 µSv/h 5 CA 10 CS	Level	2 mSv/h 2 200 CA 100 CS	Level 3		
	Level		DIMR-1		DIMR-2		DIMR-3		
(0)	Owner		Applicant (i.e. equipment owner, work coordinator, contract or activity responsible)						
Experiments	Preparation (iterative)	WDP template	Optional Applicant ⁸		Mandatory Applicant ⁹		Mandatory Applicant ^{8,9,10}		
		provides dose rates DIMR level	RPE and RP ¹¹ RPE and RP ¹¹		RP RP and RPE ⁹		RP RP and RSO		
		Documented work optimization process	<i>Optional</i> RPE		Mandatory RP and RPE		Mandatory Applicant and RPE and RP and RSO		
	Inform PCR (if applicable)		on request		Yes		Yes		
For Large LHC	Approval		RPE ⁹ and RP		LEXGLIMOS and RP ¹² and RSO		Complex manager (ALARA-c)		
		Veto rights	RP Group leader		Leader of the HSE unit		Director General		
	Follow up	Retour d'expérience	<i>Optional</i> RPE ⁹		<i>Mandatory</i> RP and RPE ⁹		Mandatory RSO and RP and intervention supervisor		
		Closure of WDP	<i>Optional</i> : RPE ⁹		Mandatory: RP		Mandatory: RP		
		Closure of intervention (DIMR)	RPE ¹³		RSO		ALARA-committee responsible ¹⁴	1	
Controls		Optional RPE ⁹		Mandatory RPE ¹⁵		Mandatory RP and RSO			

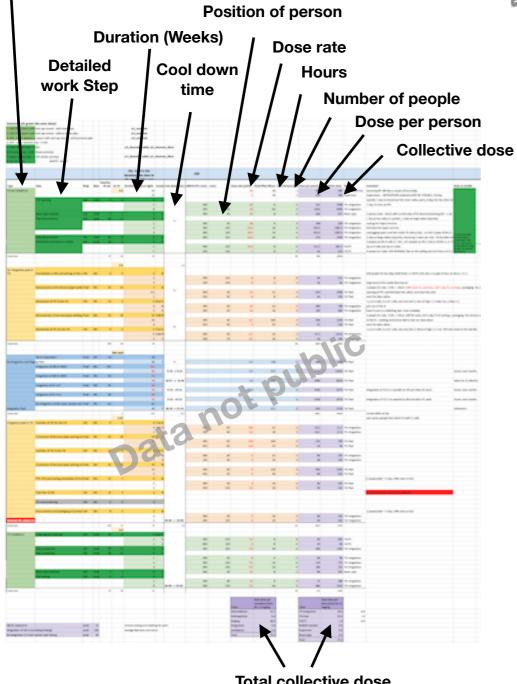
Work in the cavern : No contamination expected No airborne activity ->

ALARA classification primarily based on ambient dose equivalent (individual and collective)

e.g. for ATLAS ID Decommissioning the ambient + individual dose equiv. would indicate ALARA Level 2, however the collective dose could require

> ALARA Level 3 (estimation based on experience from Pixel removal scaled with LS3 dose rate maps)

Need for a good and reliable dose estimation !


Good dose maps are not enough we need to know where people really are during the intervention

DIMR = Dossier d'Intervention en Milieu Radioactif *RSO* = Radio protection Safety Officer

RPE = Radio Protection Expert

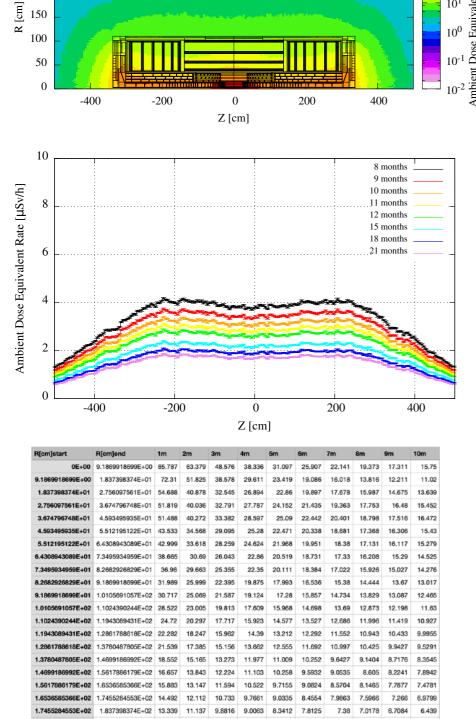
Example of a recent dose planing

Total collective dose & total individual dose per person defining the ALARA Level

Feasibility study of staging the installation of a LHC experiment tracking detector

- Question : "Assuming that the detector is not fully finished before LS3 installation, is it feasible to de-install the detector in LS4 and finish it on the surface before re-installing it again ?"
- Different scenarios needed to be analysed for different staging option, leading to very different durations
- Position data (torsos) for each person is collected in the WDP tool inside IMPACT, based on best estimation from project engineer and system experts.
- As procedures get refined and work is optimised, duration and cool down times for successive steps keep changing
- Any shift in time needs a complete **manual** update of the table.
- Depending on the scenario, estimation were in the range of 30 to 100 mSv collective dose due to the long duration (majority of the work was in a ≤ 5µSv/h environment !)

Data provided by HSE-RP


Equivalent Rate [µSv/h

Dose rate map by radius for a specific cool down time

300 250

200

Dose rate at 40cm for different cool down

9 1072 8 2703 7 6385

12.51

10.325

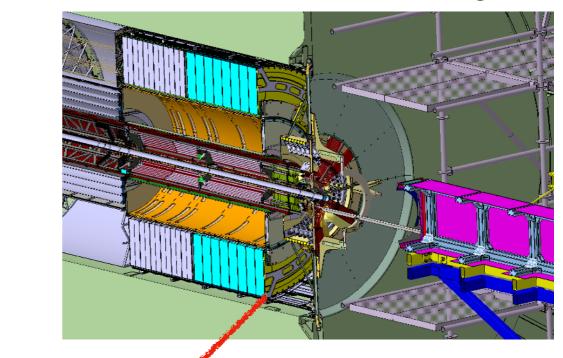
7.1381

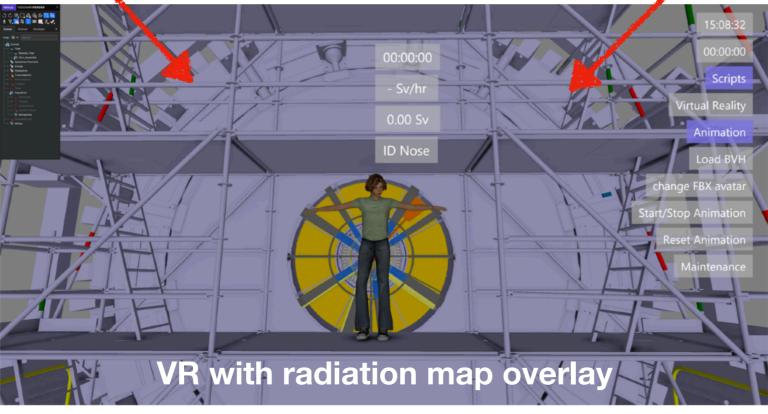
5 months cool-down from end of pp collisions in LS4

Dose rate^(*) calculations around the detector are provided by HSE-RP based on FLUKA simulations

- Provided normally as radial symmetric colour contour plot, 40cm distance (working position) line plots, or raw data files.
- One contour plot for each cool down time, ranging from 1 month to full duration of long shutdown
- Granularity normally around 5-10 cm
- "Manual" lookup from plots, interpolating "by eye"...
- Position data and duration are by far the biggest uncertainty, while FLUKA simulations are now within 20% compared to reference measurements
- Experience from LS1 (ATLAS Pixel repair) show that this type of estimation can be quite off compared to real data collected with the operation dosimeters (DMC) during work (overestimation by a factor of 4 !)
- We need to be more accurate for higher dose rates ! (especially for LS4 and beyond)

*) Ambient dose equivalent rate in [µSv/h]

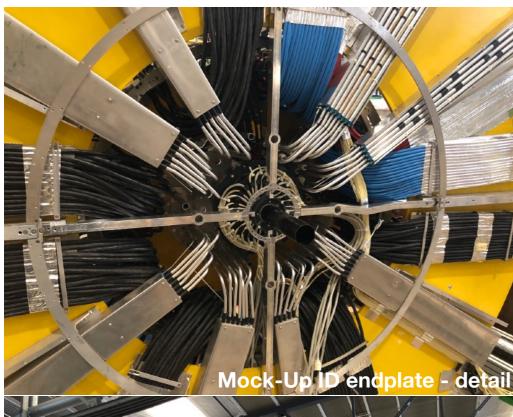

Data Tables


Concept for a (novel) dose estimation system

A Dose Estimation System - Concept

FLUKA radiation maps (HSE-RP)

CATIA detailed drawings


Virtalis Visionary Render v2.1.0 / LuaJIT2.0.5 / CATIA exports (.step) / FLUKA export (.csv)

A Dose Estimation System - Concept

Converting the CATIA drawing into a Virtual Reality (VR) Suite \checkmark

- Often some cleanup after conversion needed
- Some reduction in complexity advised (e.g. details of internal components)
- Conversion from RP files into csv table \checkmark
 - Provided by RP, normally no issue, check of correct granularity
- Still left with the problem of getting correct data on position of persons and duration of tasks X
 - No easy way to estimate the actual duration of any task in VR (removing of components, cutting cables,)
 - Exact position of person while working is difficult to get right
 - Moving around in a VR can give you a first estimation of the dose to be expected in environments where the dose doesn't vary significantly locally
- So, we need another step....

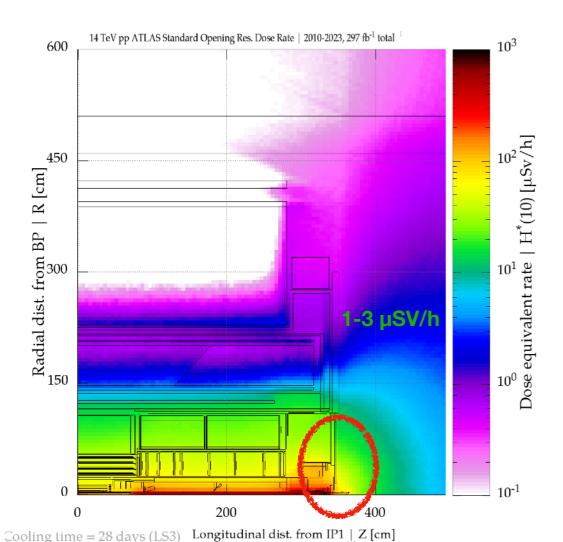
Need for Real World Mock-Ups !

- Direct training on a very elaborated representation (here of the ATLAS ID endplate)
 - Created from spare components or components manufactured based on original design drawings
 - Technicians can train each deinstallation steps in safe (non radioactive) environment
 - Direct hands-on training, including alignment & installation of various extraction tools. Cutting cables and pipes in realistic conditions
 - Actual tools and transport containers that will be used for de-installation can be tested. Any missing tools or any adaptation needed can be identified
 - Various procedures can be tested for efficiency and de-installation can be optimised
 - Realistic timing and positioning of people !

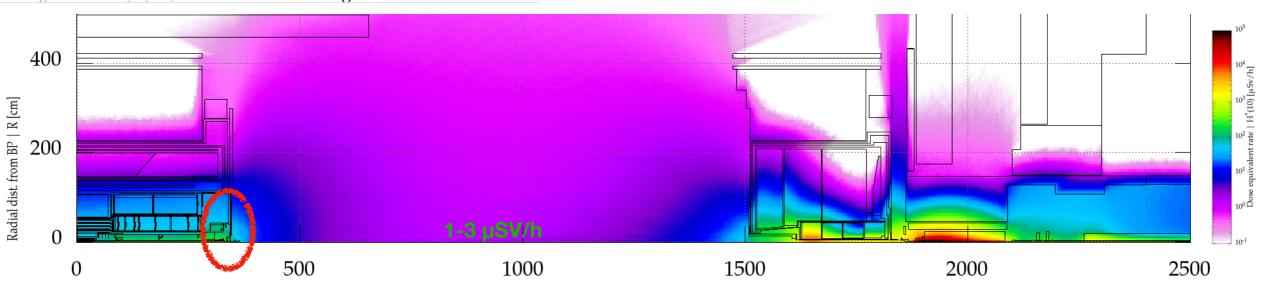
Motion Capture Solution

Commercial solution : <u>PhaseSpace</u> (PhaseSpaceSDK_1_0_9)

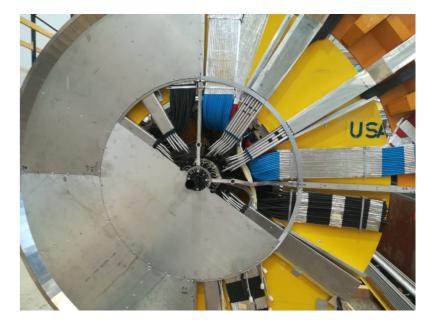
- Due to the challenging environment where the area of interest is surrounded by reflective metal structure - an optical motion capture system was chosen
- Based on individually coded LEDs and 3D cameras
- High quality recording (refresh-rate 960 fps / accuracy \leq cm)
- Easily extendable (e.g. cameras and LEDs)
- Originally rented for first tests, then bought by ATLAS TC
- Available for use, currently by EP-DT-EO for blimp studies

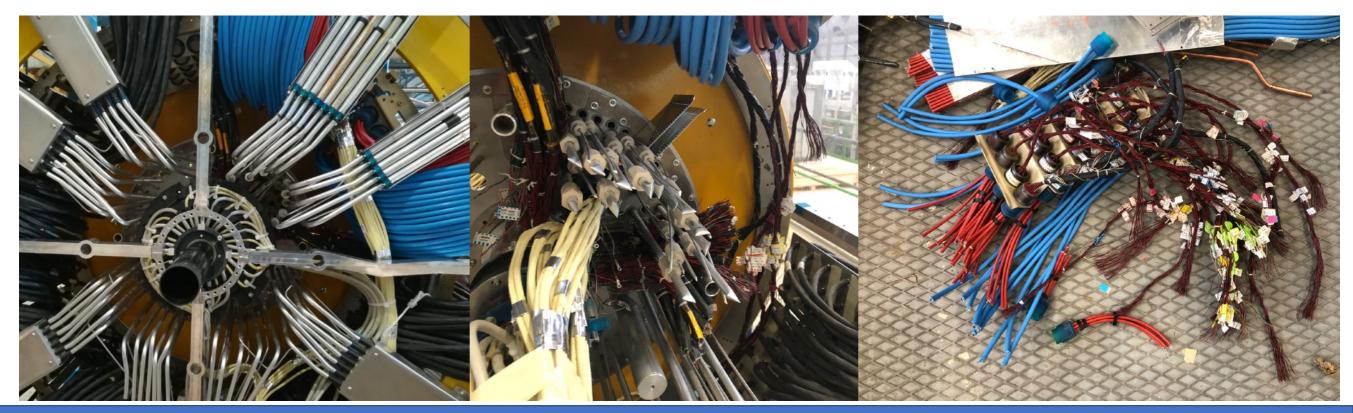


8 x 3D cameras


Test setup - field of view

Area to cover with Motion Capture

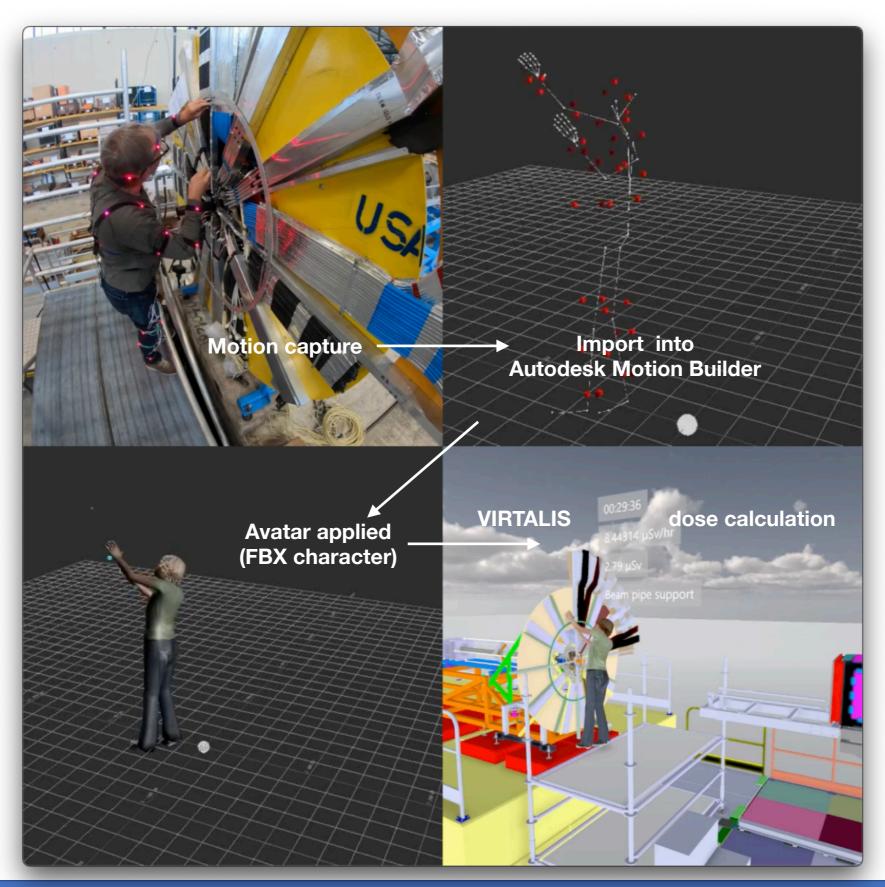



We need to cover the area where the dose is relevant for the calculation & where the dose rate is varying significantly within ≈ 1/2 meter

- near the beam pipe and inner most tracker, along the ID end plate
- The position in areas with either low dose or relative homogeneous radiation fields can then be added by other means
 - Outer calorimeter decabling
 - Work on the platform ("Mini-Vans")

- Prepared existing mock-up to mimic specific higher dose steps during decommissioning – i.e. work near the beam-pipe
 - ID End Plate removal (inner)
 - PIXEL electrical and cooling service removal
 - Connection of PIXEL extraction structures
 - Ready for PIXEL extraction (dose rate is significantly reduced after PIXEL removal)

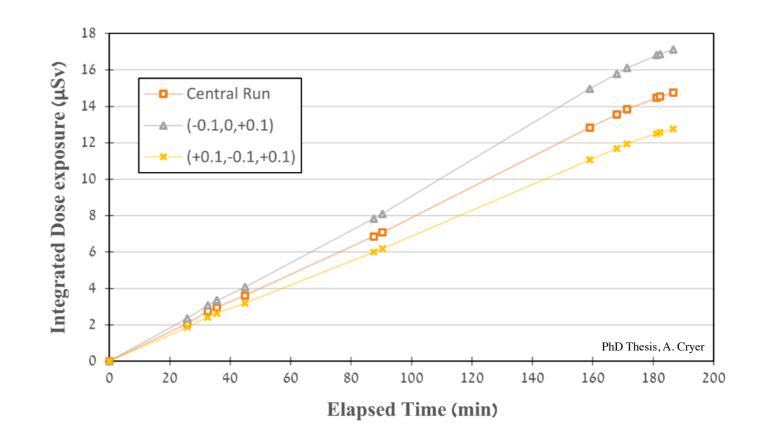
Technicians position during test sequences tracked using motion capture system


- Some difficulty with visual occlusions caused by mock-up or scaffolding

 minimised with multiple LED's per joint and position of cameras
- No LED's were placed in some positions to reduce freedom, thus detail of hands and neck were not captured

Total dose at torso position calculated based on motion data

- Imported avatar tracked both instantaneous and accumulative dose
- Some scaling factors of the avatar need to be introduced – affecting the torso position
- Tracking of multiple people feasible
 - Each LED has a unique identification and can be assigned to any position on the body
- Limited flexibility with the VIRTALIS system resulted in the need for an inter-mediatory conversion of the position data
 - Autodesk Motion Builder was used to convert the point data to an FBX character
 - The avatar is then imported to the VIRTALIS system



Initial Data collected gives a reasonable estimate for pixel removal based on the comparison data from the ID pixel exchange and scaled radiation fields

Objective	Steps	Duration hh:mm:ss	Dose Estimate μ Sv
Remove IDEP	Remove inner IDEP Nose	25:44	
Remove IDEP	Remove outer IDEP Nose	20:44	11.000
Clear BeamPipe/IBL	Remove rad monitor quarter circles, BP support beams, and BP sliding ring	6:49	8.472
support structures	Remove outer quarter ring	3:02	18.780
	Cut IBL services and Remove IBL service guide	9:18	1.102
Clean IPI and nivel	Remove heater trays and tubing	42:36	8.36
Clear IBL and pixel services	Cut ER bundle	2:48	(8-20)
services	Cutting internal Pixel services	1:08:40	(5, 798)
	Remove PST seal plate	8:56	(B) 775
Prepare Pixel for	Install PST rail interface	3:23	(8-20)
extraction	Install pixel support ring	9:51	1.1.2.2
extraction	Install internal transition rails	1:07	1.100
	Install intermediate rail and frogs	4:20	(B.)
	Total	3:06:47	1946 (776)

Possible to estimate the error in position of dosimeter location

- Varying the dosimeter position by ± 10 cm in all directions (x/y/z)
- From the 27 combinations, we find the extrema for the highest and lowest dose to be within ≈ 15% of the initial position
- Reasonable accuracy for radiation protection simulations

Re-Implementation and Improvements

- Originally, the VR Suite used was VIRTALIS, for which the university of Sheffield has a licence. However, the project could not easily be transported to another computer or maintained by CERN (no license)
- Decision to re-write the whole project in UNITY (2020.3.30f1)
 - Cross-platform, already validated usage in Windows, Mac and Linux
 - Free for personal use or small companies. Eligible if revenue or funding is less than \$100K in the last 12 months
 - Widely used in the game industry
 - Readily available documentation
 - Large number of assets and plugins (i.e. live motion capture)
 - Used by the CERN robotics team (BE-CEM-MRO)

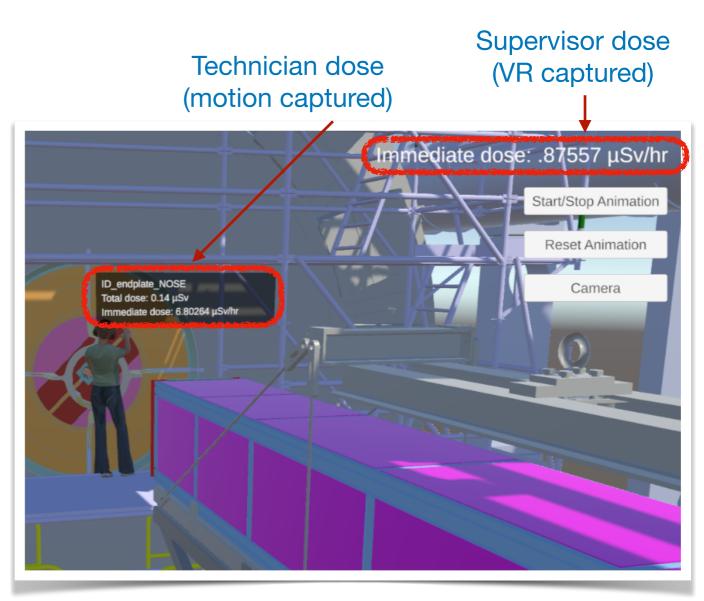
- Interaction with UNITY
 - Generally run with a graphical interface
 - Scripts allow customisation
 - Programming in C#
 - Multiple dose map files can be loaded, and selected according to the current scenario (e.g. beam pipe removed, PIXEL removed...)
 - Possible extension : different map types could be loaded, e.g magnetic field data
- Developments are backed up on CERN GitLab (facilitates long term support)
- Flexible system:
 - Save/load animations
 - Add more characters
 - Calculate dose without animation
- Reproduced the results of the previously existing implementation
- New scenarios are relatively straightforward to implement

Interaction with UNITY

Interface to import dose maps (Implemented by a custom script)

▼	#	🗸 Map Man	ager (Scrip	ot)			0	ᅷ	:
Script		🗈 MapManager							
▼ Map List							5	5	
		Element 0		ATLAS_Ful	I_Opening_Sce	nari	o_cas	se1 (0
		Element 1		ATLAS_Ful	I_Opening_Sce	nari	o_cas	se2 (•
		Element 2		ATLAS_Ful	I_Opening_Sce	nari	o_cas	se3 (•
		Element 3		ATLAS_Ful	I_Opening_Sce	nari	o_cas	se4 (•
		Element 4		ATLAS_Ful	I_Opening_Sce	nari	o_cas	se5 (•
							+		
Current Map		0							
Map Origin		X 0	Y 13.265	Z	0.2				

Interface to import record and load animation files (Implemented by a custom script)

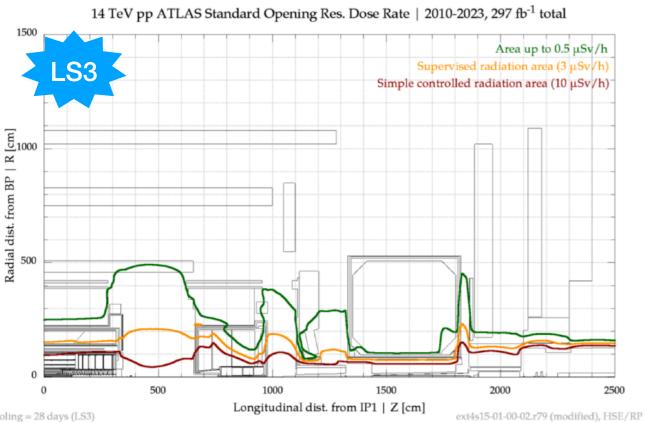

►	# 🗸	BVH Recorder (Script)			÷	:
	#	BVH Animation Load	VH Animation Loader (Script)			
	Script		BVHAnimationLoader			
	Loader	rsettings				
	Target Avatar		🙏 Character (Transform)			
	Filename		D:\Unity\ATLAS\Animations\test.bv	'n		
	Respect BVH Time		~			
	Frame Rate		29.99999			
	Clip Name		Assets/BVHClip (0).anim			
			Load animation			

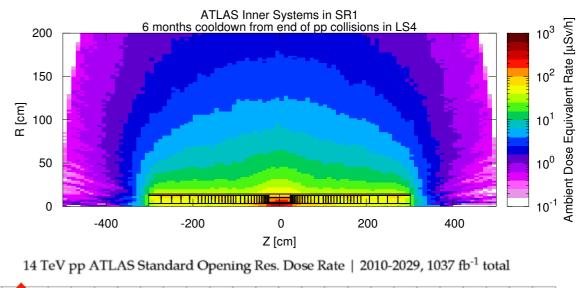
Basic functionality and improvements :

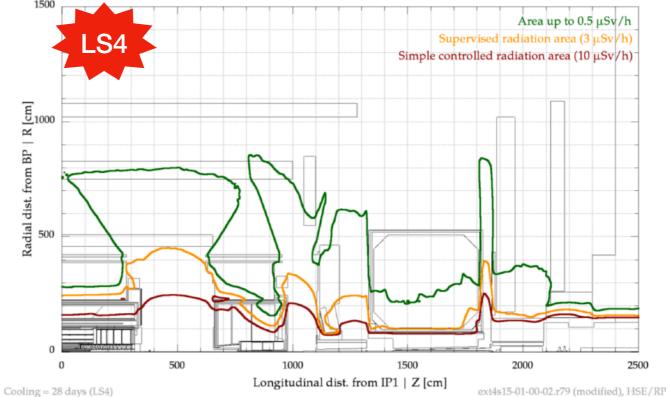
- Motion capture system now integrated via a plug-in, possible to feed live data from PhaseSpace directly into UNITY
- Save and load byh files (ASCII file that contains motion capture data for 3D characters)
- Re-Run with previously recorded data (e.g. with changed dose maps due to extended Run 3)

Supervisor / Inspector function added :

- Possible to move around VR (with/without animation) running by using VR headset
- Ideal for inspections walks etc.
- Collected dose of supervisor registered
- Possibility to collect dose estimation for low dose / homogenous field areas
- Dose collection for non-complex / lowinteractive supervision/working scenarios
- Improved training value :
 - Possible to create a display showing the trainees the current dose while on the mockup, giving instant feedback on the body position & procedure


Video created from motion capture data and imported into UNITY


Outlook


Radiation Environment beyond LS3

For LS cool down times, radiation levels scale roughly with luminosity during the last year !

- Many of the isotopes produced have relatively short half life 0
- Increases residual dose rates over the years for longer cool down times 0
- LS3 will see a small increase $\approx 20\%$ compared to LS2 (significantly higher then LS1!) 0
- LS4 and onwards will have significant higher 0 radiation levels during interventions & repairs
- **Requirement for good dose estimations for** interventions will increase
 - e.g. for ATLAS ITk Inner System replacement 0 during LS4 or LS5

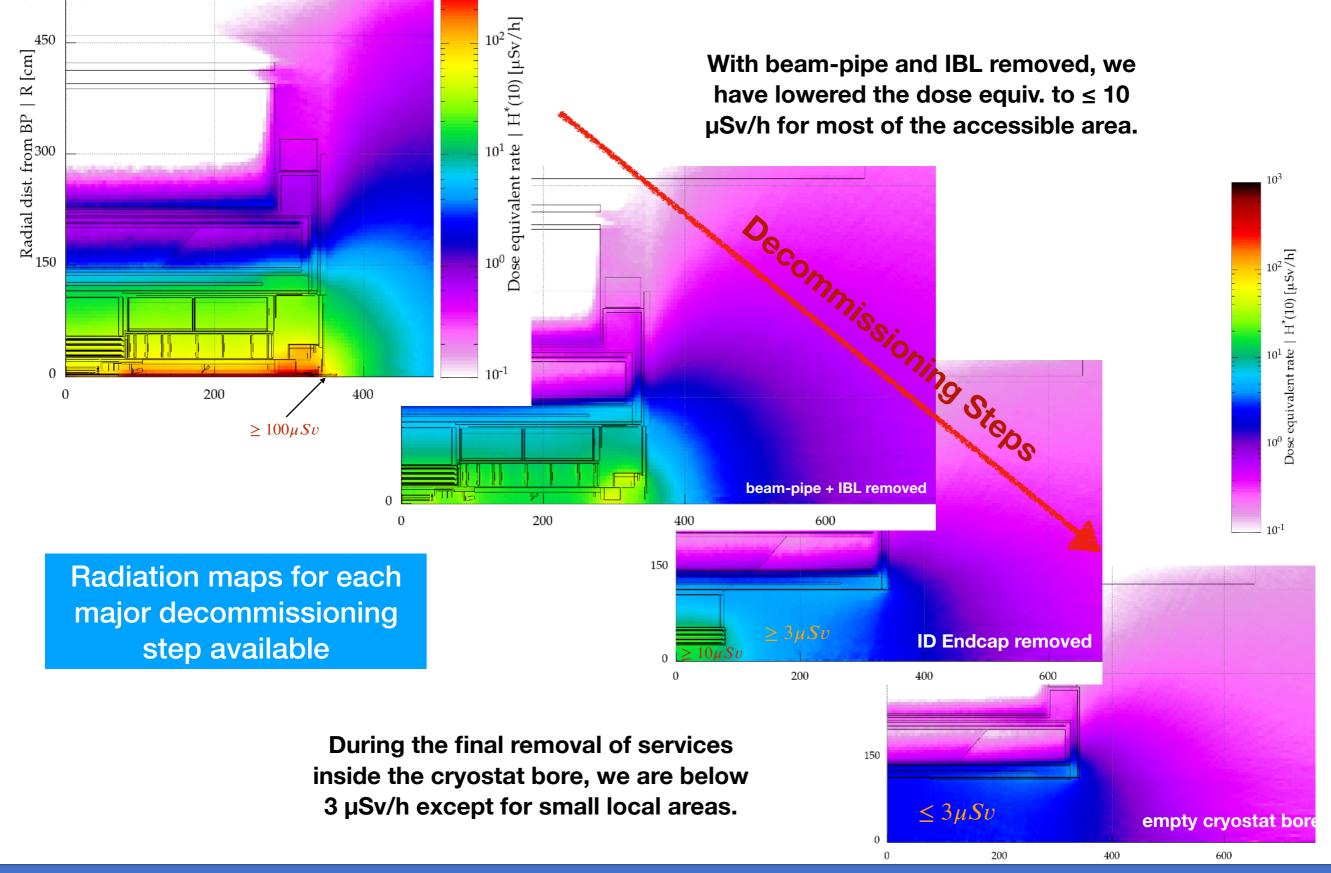
Cooling = 28 days (LS3)

J. C. Armenteros, A. Cimmino, S. Roesler and H. Vincke : "13th international Topical Meeting on Nuclear Application of Accelerators , AccApp'17"

Dose Estimation Tool - Outlook

- Although developed for the ATLAS Inner Detector decommissioning in LS3, the tool is now based on CERN standards and commercial available solutions
- Easy to apply for a multitude of **new scenarios** for other (CERN) experiments
 - O Long duration (≈ 4-6 months) of deinstallation and decommissioning of tracking detectors can lead to significant dose even in low radiation environment
 - Changes in radiation fields (changed schedule, cool down times, luminosity,...) only require to run the program with updated field maps
- Life motion capture allows the direct comparison between simulated dose and actual collected dose (with DMC)
- Especially useful for high radiation scenarios where position and duration are critical
 - Intervention on beam line elements, dumps etc. (recent SPS related intervention at ≈ 20 mSv/h)
 - Interventions on forward detectors located near beam pipe (LUCID, AFP,....)
- Integration into other CERN projects (e.g. Robotics) should be straight forward

Some Publications :


- 18.06.2019 An Advanced Radiation Dose Estimation Tool for the Decommissioning of High Energy Physics Experiments [M.R.Jäkel, A. Cryer, R. French, N. Hartman, G. Kapellmann, H.Marin-Reyes, K.L. Veale] Forum on Tracking Detector Mechanics 2019, Cornell University, NY
- 06.02.2020 An Advanced Radiation Dose Estimation Tool for Decommissioning of HEP Experiments
 [M.Jäkel] Presentation to HSE and TC (Indico, restricted)
- 12.02.2021 Integrating motion capture in a virtual reality intervention planning platform to study radiation protection measures for the ATLAS inner detector decommissioning [A. Cryer, G. Kapellmann-Zafra, H. Marin-Reyes, K. Lohwasser, A. Steel, K. Veale and M. Jaekel], 2021 JINST 16 P03020

I0.2021 - Using emerging technologies to reduce occupational radiation exposure in the ATLAS ID Decommissioning, and other high-radiation environments. [A.Cryer]; PhD Thesis, University of Sheffield, UK

Backup Slides

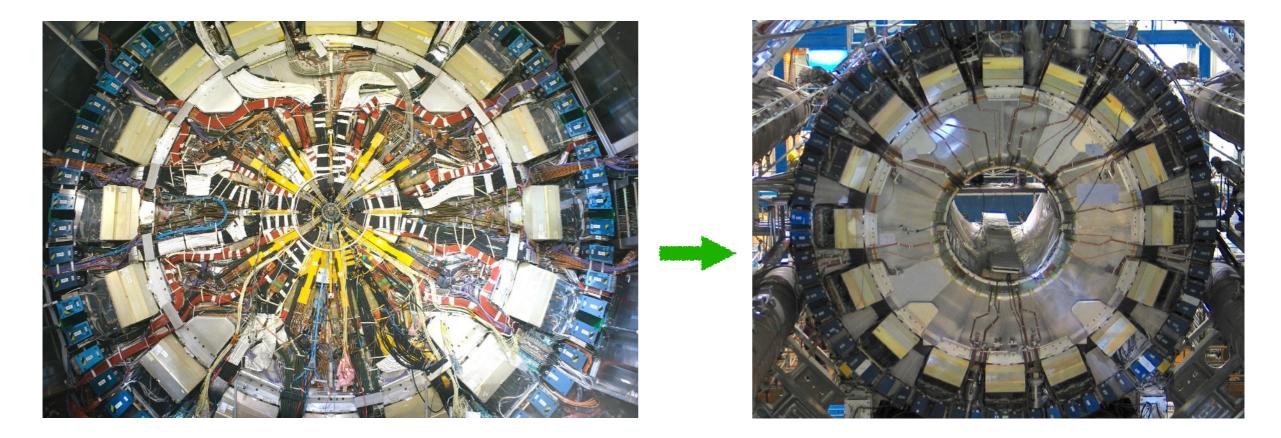
See also 2019 talk

Radiation Environment during Decommissioning

ALARA rule applied to interventions at CERN EDMS 1751123 Rev 1.2

5.1. INDIVIDUAL RP RISK ASSESSMENT

An individual RP risk assessment is performed if one of the following conditions applies:

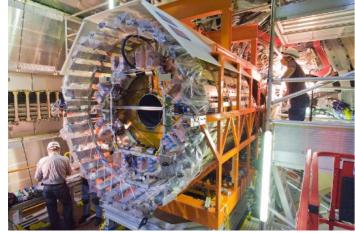

- The intervention is performed in a Limited Stay or High Radiation Area.
- The estimated intervention duration in a Controlled Radiation Area is longer than 100 hours or 500 man hours, i.e., there is a risk to exceed the ALARA Level 1 criteria (100 µSv or 500 man µSv, respectively) already at low dose rates.
- The intervention carries contamination risks (e.g., destructive work).
- The intervention is performed in an area classified as Work Sector (e.g., radioactive workshops).
- It is a radiography.

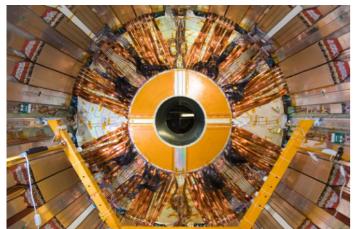
If none of the above conditions apply, the RP group has nevertheless the right to request an individual RP risk assessment (e.g., for long interventions in Supervised Radiation Areas).

For each intervention leading to individual or collective doses exceeding 50% of the ALARA Level 1 criteria (i.e., 50 μ Sv or 250 man μ Sv, respectively) a DIMR is established. It follows the workflow including its approval as detailed further below.

Scope of the ID Decommissioning

- Complete removal of the ATLAS tracking detector (PIXEL/SCT/TRT), which will be replaced by the ITk during the Long Shutdown 3 (LS3, 2024)
- Removal of all services up to (and including) the Patch Panels (PP2) inside the Muon spectrometer
- Cleaning of the cryostat bore (as much as feasible)
- Work scheduled for 6 months, starting approx. 250 days after end of Run 3 (current schedule v7.1, assuming one month ion run in Dec. 2024)


See also


2019 talk

De-Installation Process

• Removal inner beam pipe (VI) (Side C)

- Cut\disconnect any services on both the A and C Sides
- Align frames and transport tools
- Use traction tool to extract BP into BP container

Remove IBL (Side C)

- Cut and removes IBL services at PP1
- Pull IBL into MPC

• Remove PIXEL package (Side C)

- Cut and remove Pixel services at PP1
- Align fames and transport tools
- Remove IDEP nose and supports (both sides)

Remove services from cryostat flange (both sides)

- Disconnect Service boxes from ID chamfer for clearance (PP1F)
- Cut/remove services from flange
- Remove SCT\TRT cooling services which inhibit EndCap extraction

Remove ID endcap (Side C)

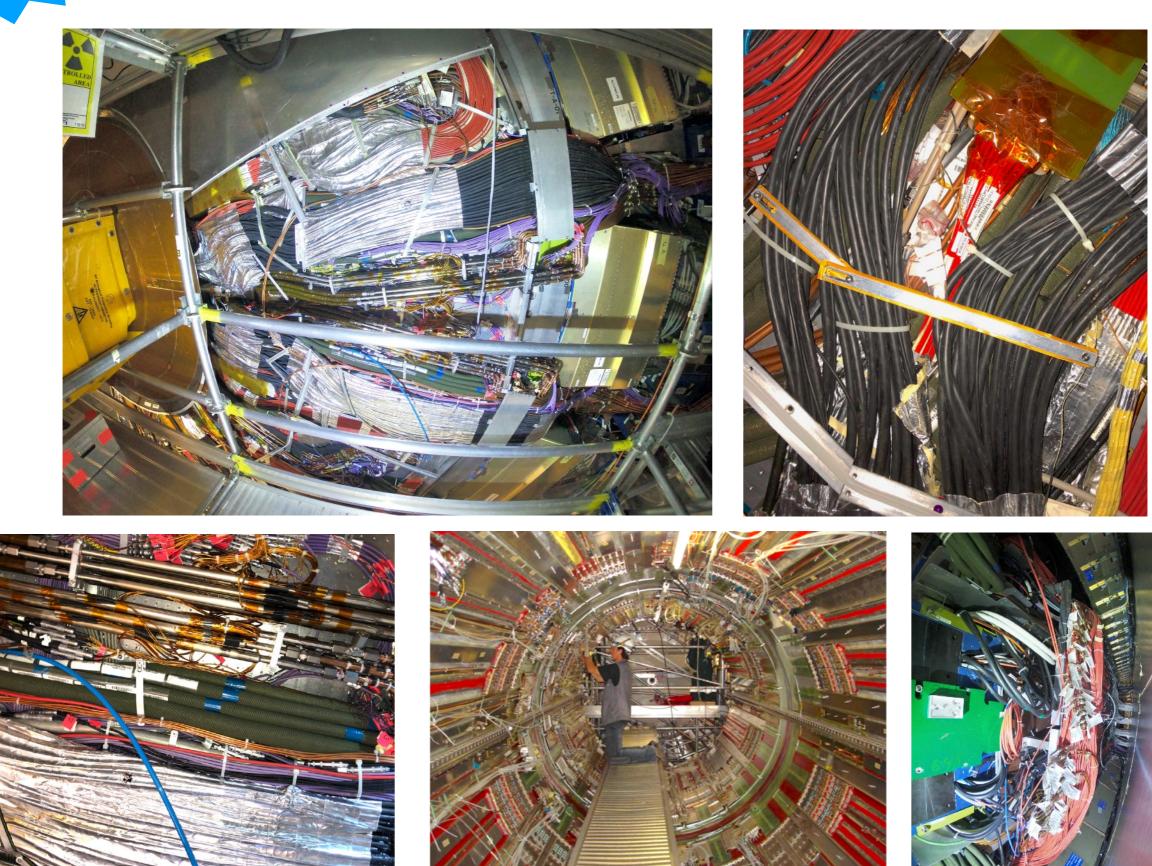
- Lower and align ID EndCap trolley
- Install interface rails
- Extract EndCap

•

• Remove ID Endcap (Side A)

- Side C to Standard Opening
- Side A to Large Opening
- Remove ID EndCap as for Side C

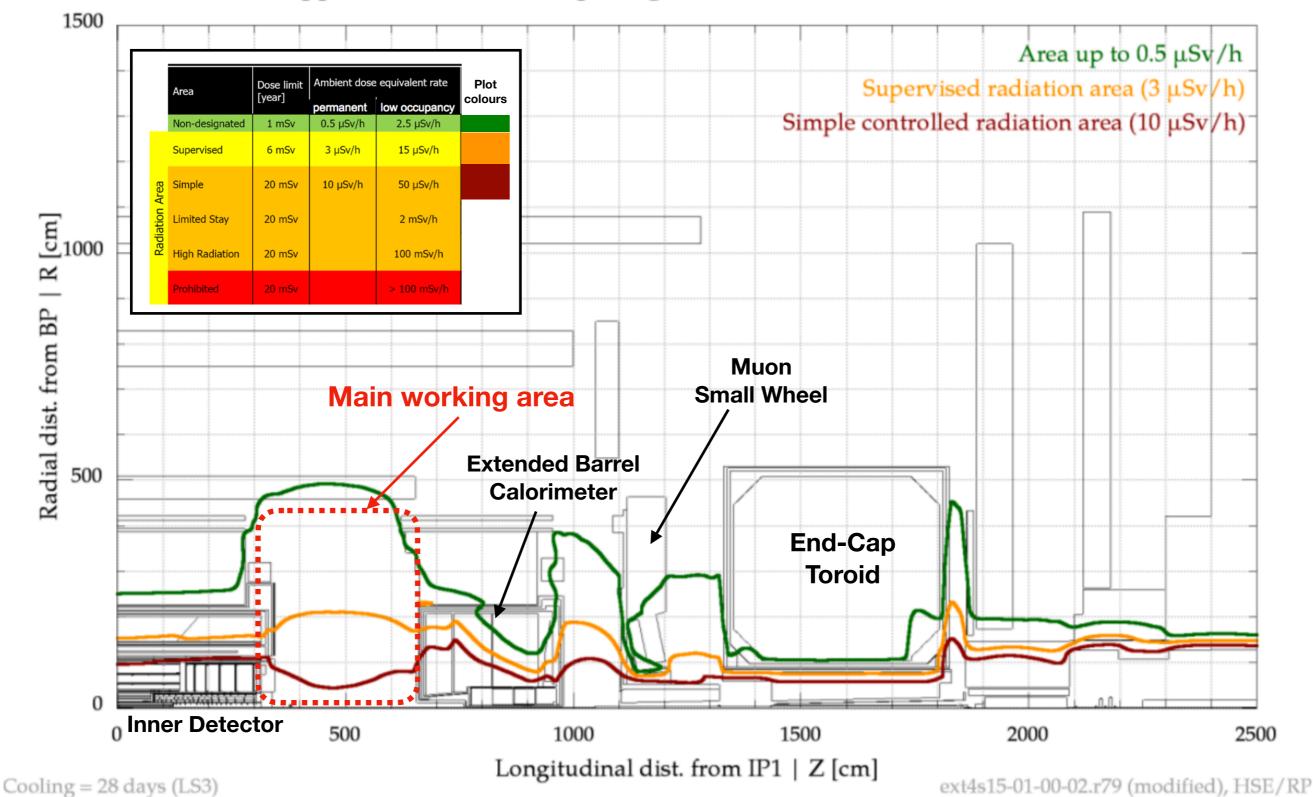
Disconnect barrel services (both sides)

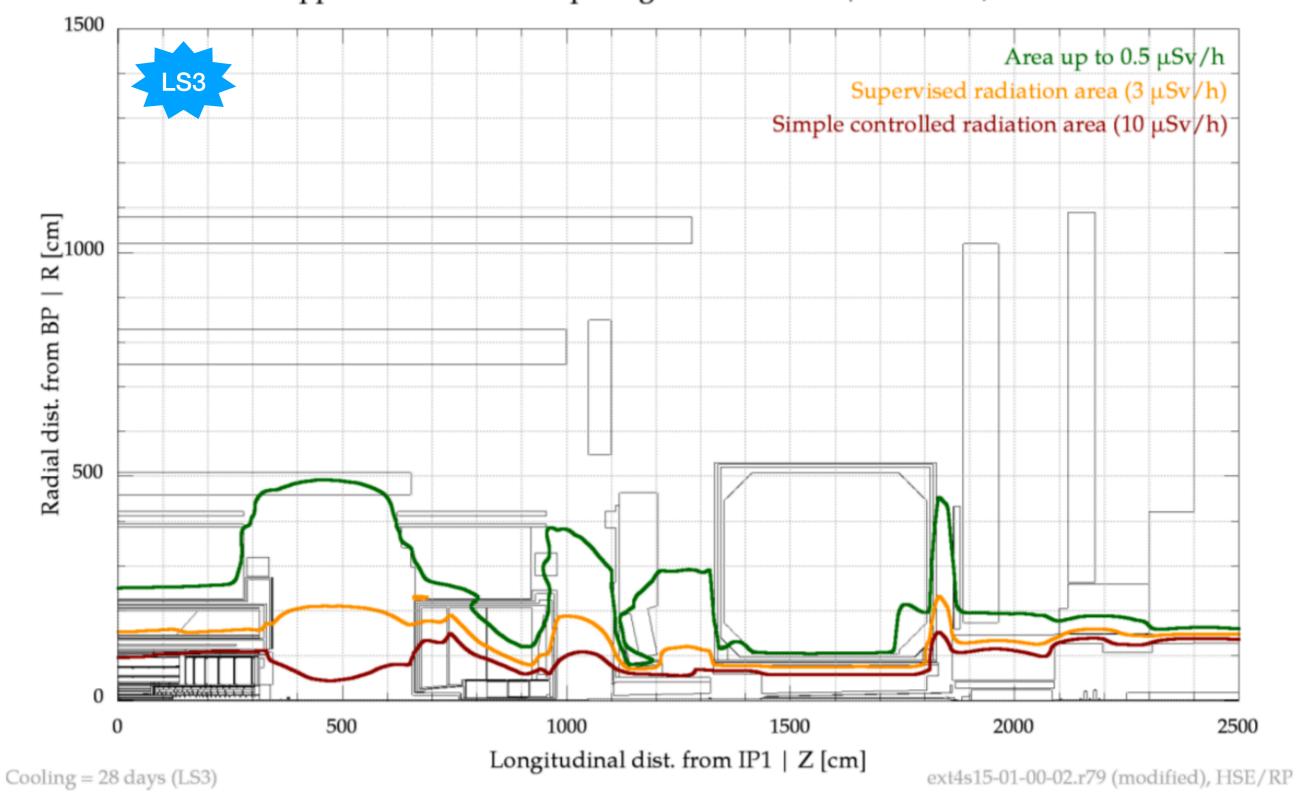

- Cut\disconnect PP1B services
- Ensure clearance between services and Barrel envelope

• Remove ID barrel (Side A)

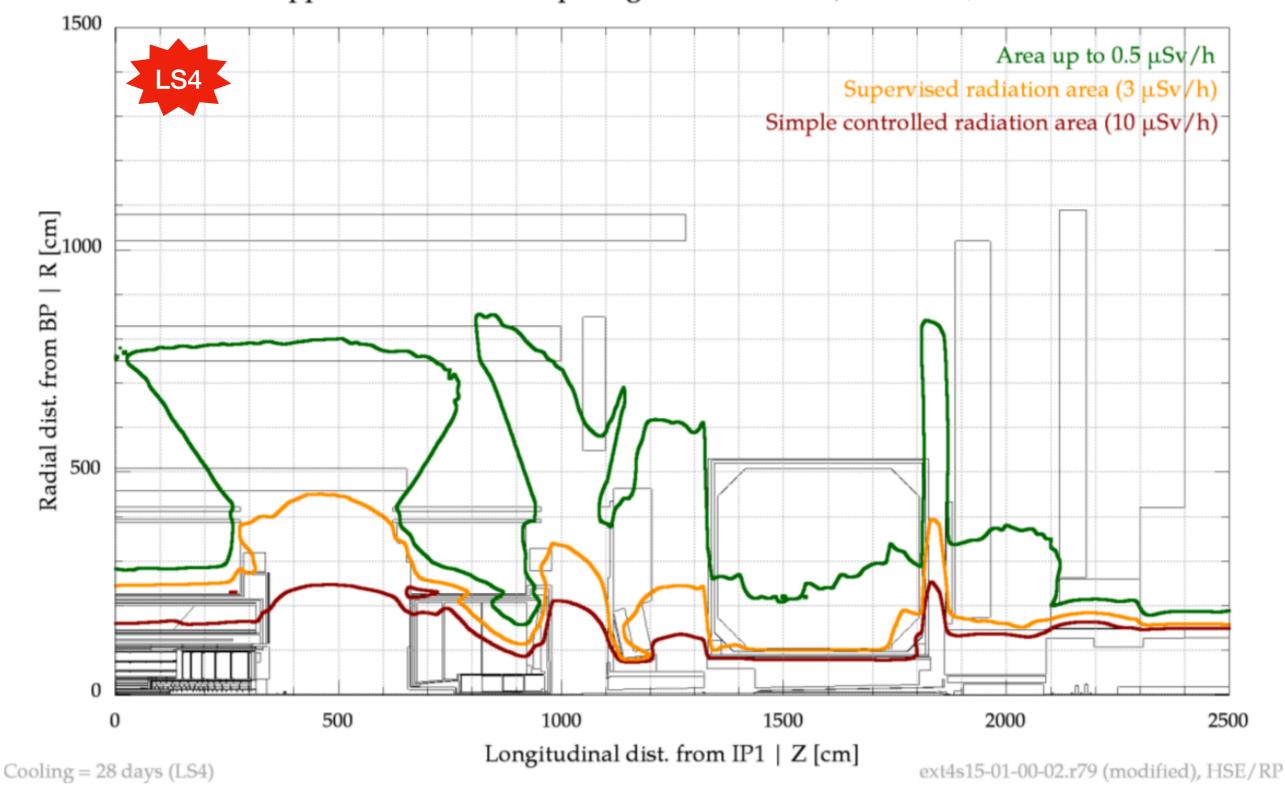
- Replace EndCap V-Rails with barrel flat-rails
- Lower and align Barrel trolley
- Remove services and trays from cryostat bore
- Remove all services from cryostat face

<u>See also</u> 2019 talk


Removal of Services



M.R. Jäkel


Radiation Classification - LS3

14 TeV pp ATLAS Standard Opening Res. Dose Rate | 2010-2023, 297 fb⁻¹ total

14 TeV pp ATLAS Standard Opening Res. Dose Rate | 2010-2023, 297 fb⁻¹ total

14 TeV pp ATLAS Standard Opening Res. Dose Rate | 2010-2029, 1037 fb⁻¹ total