

NATURWISSENSCHAFTLICHE FAKULTÄT

The origin of UHECR: current status of a decades-long puzzle

Rodrigo Guedes Lang Erlangen Centre for Astroparticle Physics (ECAP) rodrigo.lang@fau.de

1st EuCAPT Annual Symposium Friday, May 7th, 2020

UHECR

- Astroparticles in the EeV range;
- Most energetic known:
 - Probes to the extremes of the Universe;

UHECR

- Astroparticles in the EeV range;
- Most energetic known:
 - Probes to the extremes of the Universe;
- > Charged:
 - Don't point directly back to their sources.

The puzzle: what are their origins?

- Astroparticles in the EeV range;
- Most energetic known:
 - Probes to the extremes of the Universe;
- > Charged:
 - Don't point directly back to their sources.

Rodrigo Guedes Lang

The pieces: experimental data

- Very low flux (< 1/km²/year);
- Huge ground-based experiments:
 - Pierre Auger Observatory:
 - ~3000 km²;
 - Argentina;
 - Telescope Array:
 - 762 km²;
 - USA.

- > Three main observables:
 - Energy spectrum;
 - Mass composition;
 - Arrival directions.

> Three main observables:

• Energy spectrum;

The Pierre Auger Collaboration, Phys. Rev. Let., 2020

The Pierre Auger Collaboration, Phys. Rev. Let., 2020

Intermediate mass 800

for the highest energies;

Relies on models for the hadronic interactions.

The pieces: experimental data

Energy spectrum;

 \succ

Ο

Yushkov, A., ICRC 2019

- > Three main observables:
 - Energy spectrum;
 - Mass composition;
 - Arrival directions.

> Auger's large scale anisotropy:

The Pierre Auger Collaboration, **Science**, 2017

Auger's large scale anisotropy: 12,5 years of data;

Low energy - large scale

• E > 8 EeV;

The Pierre Auger Collaboration, Science, 2017

0

The Pierre Auger Collaboration, Science, 2017

- Auger's large scale anisotropy:
 - 12,5 years of data;
 - E > 8 EeV;
 - Dipolar behavior;

Rayleigh Analysis

$$a_{lpha} = rac{2}{\mathcal{N}} \sum_{i=1}^{N} w_i \cos lpha_i, \qquad b_{lpha} = rac{2}{\mathcal{N}} \sum_{i=1}^{N} w_i \sin lpha_i$$
 $r_{lpha} = \sqrt{a_{lpha}^2 + b_{lpha}^2}, \qquad an arphi_{lpha} = rac{b_{lpha}}{a_{lpha}}$

The Pierre Auger Collaboration, **Science**, 2017

Rodrigo Guedes Lang

- Auger's large scale anisotropy:
 - 12,5 years of data;
- Statistically consistent with d=0 \circ E > 8 EeV: Dipolar behavior; Ο Dipole Dipole Dipole **Dipole right** Dipole Energy [EeV] component d_z component d amplitude d declination δ_d [°] ascension α_d [°] $0.006\substack{+0.007\\-0.003}$ $0.025\substack{+0.010\\-0.007}$ -75^{+17}_{-8} 4 to 8 -0.024 ± 0.009 80 ± 60 $0.065\substack{+0.013\\-0.009}$ $0.060\substack{+0.011\\-0.010}$ -24^{+12}_{-13} -0.026 ± 0.015 8 100 ± 10 The Pierre Auger Collaboration, **Science**, 2017 d>0 with 5.2 σ

- Auger's large scale anisotropy:
 - 12,5 years of data;
 - E > 8 EeV;
 - Dipolar behavior:
 - 6.5% amplitude;
 - points outward the GC;

Auger SD1500 Auger SD750 **KASCADE-Grande**

Dipole in right ascension; Ο

Low energy - large scale

14,5 yr of Auger data; Ο

1st EuCAPT Annual Symposium

Rodrigo Guedes Lang

10^{0} Auger SD1500

- Evolution with energy: \succ
 - Dipole in right ascension; Ο

- > Evolution with energy:
 - Dipole in right ascension;
 - 14,5 yr of Auger data;

Evidence of a change from predominance of galactic to extragalactic sources

The Pierre Auger Collaboration, Astrophys. J., 2020

1st EuCAPT Annual Symposium

Rodrigo Guedes Lang

12h -6h 18h

 $\Phi(\hat{\mathbf{n}}) \, [\mathrm{km}^{-2} \, \mathrm{vr}^{-1} \, \mathrm{sr}^{-1}]$

Full sky: \succ

 \circ Auger + TA;

di Matteo, A. et al., ICRC 2019

Galactic plane - --- -

Rodrigo Guedes Lang

Full sky:

Ο

0

Ο

Auger + TA;

 \succ

Regardless of higher multipoles; _____ Slightly lower dipole: 4.99% _____

Rodrigo Guedes Lang

 $d_x = (-0.7 \pm 1.1 \pm 0.01)\%$ This work $d_v = (+4.2 \pm 1.1 \pm 0.04)\%$ $d_z = (-2.6 \pm 1.3 \pm 1.4)\%$ $d_x = (-1.0 \pm 1.0)\%$ $d_{\rm v} = (+5.9 \pm 1.0)\%$ $\ell_{\rm max} = 1$ Auger [5] $d_{z} = (-2.6 \pm 1.5)\%$ > 8 EeV $d_x = (-0.3 \pm 1.3)\%$ $d_{\rm v} = (+5.0 \pm 1.3)\%$ $\ell_{\rm max} = 2$ $d_{z} = (-2 \pm 4)\%$

di Matteo, A. et al., ICRC 2019

- > Higher energy intermediate scales:
 - Fewer events;
 - Smaller deflections;
 - Search for excesses w.r.t. isotropic expectations:
 - Minimum energy;
 - Radius;

High energy - intermediate scale

Rodrigo Guedes Lang

- > TA hotspot:
 - 5 years of data;
 - E > 57 EeV;

- No known sources;
- ~19° from the supergalactic plane

Telescope Array Collaboration, Astrophys. J. Lett., 2014

TA hotspot - significance:

Before penalizations

- Excess over background increasing over time;
- What is the probability of such strong excess appearing if you do different searches?

Rodrigo Guedes Lang

TA hotspot - significance:

Monte Carlos simulations

Telescope Array Collaboration, Astrophys. J., 2018.

- Excess over background increasing over time;
- What is the probability of such strong excess appearing if you do different searches?
- > Post-trial significance:
 - TA '14: 3.4σ;
 - TA '18: 3.74σ;
 - ο TA '19: 2.9**σ**.

Rodrigo Guedes Lang

- > Auger correlation maps:
 - Search for correlations of excesses with known extragalactic gamma-ray sources:
 - Active galactic nuclei (AGNs);
 - Starburst galaxies (SBGs);
 - Search variables:
 - Minimum energy;
 - Radius;
 - Anisotropic fraction.

Observed Excess Map - E > 39 EeV

Residual Excess Map - Starburst galaxies - E > 39 EeV

Model Excess Map - Starburst galaxies - E > 39 EeV

Model Flux Map - Starburst galaxies - E > 39 EeV

The Pierre Auger Collaboration, Astrophys. J. Lett., 2018.

1st EuCAPT Annual Symposium

Rodrigo Guedes Lang

28

Rodrigo Guedes Lang

Pierre Auger Collaboration, **Astrophys. J. Lett.**, 2018.

High energy - intermediate scale

- > Auger correlation maps:
 - Search for correlations of excesses

with known extragalactic

gamma-ray sources:

- Active galactic nuclei (AGNs);
- Starburst galaxies (SBGs);
- Correlations:
 - AGNs: 2.7σ;
 - AGN+SBG: 3.7σ;
 - SBG: 4.0**σ**.

- ➤ Full sky:
 - Auger+TA;
 - Two hotspots;
 - Local significances:
 - 4.7σ;
 - 4.2σ;
 - Post-trial signif.:
 - 2.2σ;
 - 1.5σ;

 $E_{Auger} \ge 40 \text{ EeV}, E_{TA} \ge 53.2 \text{ EeV}; 20^{\circ} \text{ smearing}$

di Matteo, A. et al., ICRC 2019

Rodrigo Guedes Lang

The assembly: phenomenology

> Several efforts to describe the experimental results:

Taylor, A. et al., Phys. Rev. D, 2011

Harari, D. et al., Phys. Rev. D, 2015

Globus, N. et al., Astrophys. J. Lett., 2017

di Matteo, A. et al., MNRAS, 2018

Hackstein, S. et al., MNRAS, 2018

Wittkowski, D. et al., Astrophys. J. Lett., 2018

Dundovic, A. et al., JCAP, 2019

Lang, R.G. et al., Phys. Rev. D, 2020

Mollerach, S. et al., Phys. Rev. D, 2020

Lang, R.G. et al., Phys. Rev. D, 2021

Bister, T. et al., Astropart. Phys., 2021

(amongst many others)

Rodrigo Guedes Lang

Rodrigo Guedes Lang

33

Hypotheses

Sources

-What objects can accelerate up to this energy?

-What is the injected spectra? -What is the mass composition of

emitted particles?

-What is their spatial distribution?

Rodrigo Guedes Lang

Hypotheses

Hypotheses

- \succ Lots of hypothesis needed;
- > We need to find a balance between:
 - Many hypotheses/Few fit parameters -> model dependency;
 - Few hypotheses/Many fit parameters -> no strong conclusions.

Starting with the borders

- > A possible (phenomenological) approach:
 - Understand the behavior of the measurements and how they depend on each assumption;
 - Find variables which don't strongly rely on the hypotheses.
- > One (of many) case:
 - Understand the role of local sources

in the dipole;

OSSES;

A (possible) "border": Local sources

Propagation horizon;

Energy-dependent

How much important are they?

Batista, R. A., Ph.D. Thesis, 2015

A (possible) "border": Local sources

> Contribution from different

distance shells;

- \succ Example spectrum;
- \succ Semi-analytical method;
- \succ Turbulent EGMF.

Lang, R. G. et al., Phys. Rev. D, 2020

1st EuCAPT Annual Symposium

Rodrigo Guedes Lang

Lang, R. G. et al., **Phys. Rev. D**, 2020

A (possible) "border": Local sources

- > Dipole for a single source:
 - Turbulent EGMF;
 - Semi-analytical propagation;
 - Example scenario.

Lang, R. G. et al., Phys. Rev. D, 2021

44

A (possible) "border": Local sources

Rodrigo Guedes Lang

- Dipole for a single source:
 - Turbulent EGMF;
 - Semi-analytical propagation;
 - Example scenario.

Closer sources have stronger dipoles

Rodrigo Guedes Lang

45

A (possible) "border": Local sources

- For a homogeneous distribution of sources:
 - $_{\circ}~~\text{D}_{\text{min}}$ related to density;

Rodrigo Guedes Lang

46

A (possible) "border": Local sources

- For a homogeneous distribution of sources:
 - $_{\circ}~~\text{D}_{\text{min}}$ related to density;

Larger densities lead to smaller dipoles

Rodrigo Guedes Lang

4<u>8</u>

A (possible) "border": Local sources

- Evolution with energy:
 - Homogeneous and random distribution of sources;
 - Turbulent EGMF;
 - Semi-analytical propagation;
 - Example spectra.

Rodrigo Guedes Lang

<u>49</u>

A (possible) "border": Local sources

- Evolution with energy:
 - Can be understood from the contribution of each distance shell;
 - Distance to the nearest source and density dictate the amplitude.

A (possible) "border": Local sources

- > Dependencies:
 - EGMF intensity;

Rodrigo Guedes Lang

Lang, R. G. *et al.*, **Phys. Rev. D**, 202 **51**

A (possible) "border": Local sources

- > Dependencies:
 - EGMF intensity;
 - Composition:
 - Changes in evolution with energy;
 - Transition from dipolar to non-dipolar;
 - More realistic: mixed composition.

A (possible) "border": Local sources

- Next to this border: \succ
 - Position (and distance) of local sources;
 - \circ Source density;
 - Composition; Ο
 - Power spectrum. Ο

Current status of the puzzle

- Recent data show deviations from isotropy:
 - ~6% dipole at E>8 EeV pointing outwards the galactic center;
 - Evolution of dipole amplitude and phase with energy;
 - Hotspots at the highest energies;
 - Hints of a correlation with Starburst Galaxies;
- Several analysis trying to describe such deviations:
 - Heavily dependent on astrophysical hypotheses about things we don't know well;

Future of the puzzle: experiments

- > Multimessenger approach:
 - Source catalogs;
 - EGMF and GMF;
 - Secondaries;
- Future experiments (e.g. AugerPrime, TAx4, JEM-EUSO, POEMMA):
 - Composition;
 - Better statistics.

Future of the puzzle: theory

- Better understanding the processes involved;
- > Further development of analysis techniques:
 - Understand the model dependency of the analyses;
 - Find variables which are decoupled from some (most) of the hypotheses.

NATURWISSENSCHAFTLICHE FAKULTÄT

Thank you and stay safe!

rodrigo.lang@fau.de