

Signatures of ULTRALIGHT SCALARS in neutrino oscillation experiments

<u>Pablo Martínez-Miravé</u> (IFIC, CSIC – U. Valencia)

in collaboration with **Abhish Dev** and **Pedro A. N. Machado**

First EuCAPT Annual Symposium Based on JHEP 01 (2021) 094

Neutrino oscillation experiments could dectect ultralight scalars via modulations of the signal with time and distorted neutrino oscillations.

ULTRALIGHT SCALARS and NEUTRINOS

An ultralight scalar field,

$$\phi(x,t) \simeq \frac{\sqrt{2\rho_{\phi}}}{m_{\phi}} \sin\left[m_{\phi}(t - \vec{v} \cdot \vec{x})\right]$$

A. Berlin.

PRL 117 (2016) 23, 231801

G.Krnjaic et al.

PRD 97 (2018) 7, 075017

V. Brdar et al.

PRL117 (2016) 23, 231801

which couples effectively to neutrinos,

$$\mathcal{L}_{\text{eff}} = -m_{\nu} \left(1 + y \frac{\phi}{\Lambda} \right) \bar{\nu} \nu + \text{h.c.}$$

induces a time dependence on the mass splittings (also on the mixing angles...)

$$\Delta m_{ij}^2(t) \equiv m_i^2(t) - m_j^2(t) \simeq \Delta m_{ij}^2 \left[1 + 2\eta \cos(m_\phi t) \right]$$

Time between two events (inverse of the event rate)

Running time

$$au_{\phi} \sim au_{\nu} \sim 10^{\text{-}2}$$
 - $10^{\text{-}3} \; \mathrm{s}$

$$\tau_{\phi} \sim \tau_{\rm evt} \sim 1 \, \, {\rm day}$$

$$\tau_{\phi} \sim \tau_{\rm exp} \sim 10 \text{ years}$$

$$m_{\phi}$$
 ~10⁻¹³ –10⁻¹⁴ eV

$$m_\phi$$
 ~10⁻²⁰ eV

$$m_\phi$$
 ~10⁻²³ eV

The **mass** of the ultralight scalar is related to the **modulation period**

$$\tau_{\phi} \equiv \frac{2\pi\hbar}{m_{\phi}} = 0.41 \left(\frac{10^{-14} \text{ eV}}{m_{\phi}}\right) \text{ seconds.}$$

Time between two events (inverse of the event rate)

Running time

$$au_{\phi} \sim au_{\nu} \sim 10^{\text{-}2} \text{ - } 10^{\text{-}3} \text{ s}$$

$$\tau_{\phi} \sim \tau_{\rm evt} \sim 1 \, \mathrm{day}$$

$$\tau_{\phi} \sim \tau_{\rm exp} \sim 10 \text{ years}$$

$$m_\phi$$
 ~10⁻²⁰ eV

$$m_\phi$$
 ~10⁻²³ eV

A SIGNAL TIME MODULATION

could be measured in experiments with large statistics

 au_{ϕ}

In **DUNE** for a modulating mass splitting only, Δm^2_{31} .

In **DUNE** for a modulating mass splitting only, Δm^2_{31} .

In **DUNE** for a modulating mass splitting only, Δm^2_{31} .

In **DUNE** for a modulating mass splitting only, Δm^2_{31} .

Time between two events (inverse of the event rate)

Running time

$$au_{\phi} \sim au_{\nu} \sim 10^{\text{-}2}$$
 - $10^{\text{-}3} \; \mathrm{s}$

$$\tau_{\phi} \sim \tau_{\rm evt} \sim 1 \; {\rm day}$$

$$\tau_{\phi} \sim \tau_{\rm exp} \sim 10 \text{ years}$$

$$m_\phi$$
 ~10⁻²⁰ eV

$$m_\phi$$
 ~10⁻²³ eV

 au_{ϕ}

Modulation gets averaged leading to **DISTRORTED NEUTRINO OSCILLATIONS**

In **DUNE** for a modulating mass splitting only, Δm^2_{31} .

Time between two events (inverse of the event rate)

Running time

$$au_{\phi} \sim au_{\nu} \sim 10^{\text{-}2} \text{ - } 10^{\text{-}3} \text{ s}$$

$$\tau_{\phi} \sim \tau_{\rm evt} \sim 1 \; {\rm day}$$

$$\tau_{\phi} \sim \tau_{\rm exp} \sim 10 \text{ years}$$

$$m_\phi$$
 ~10⁻²⁰ eV

$$m_\phi$$
 ~10⁻²³ eV

Modulation becomes too fast and manifests as a **fast-varying matter potential**

and eventually one can not distinguish it from standard oscillations.

For a more detailed discussion of the signatures and a particular example (DUNE), see <u>JHEP 01 (2021) 094</u>.

TAKE HOME MESSAGE

Neutrino oscillation experiments could dectect ultralight scalars via modulations of the signal with time and distorted neutrino oscillations.