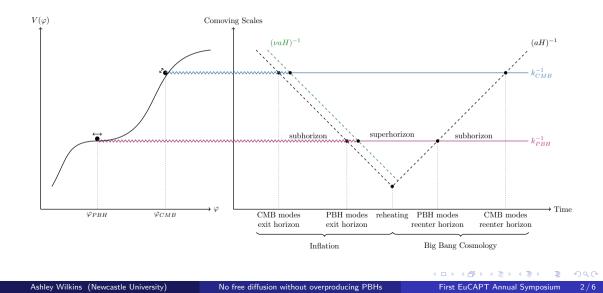
No free diffusion during Inflation without overproducing Primordial Black Holes

Ashley Wilkins Gerasimos Rigopoulos


School of Maths, Stats & Physics Newcastle University

May 2021

First EuCAPT Annual Symposium 1/

Inflationary Perturbations

The separate universe approach indicates that, for long wavelengths, each point in space follows its own K-G and Friedmann equation i.e.

$$\ddot{\phi}(t, \mathbf{x}) + 3H(t, \mathbf{x})\dot{\phi}(t, \mathbf{x}) + V_{,\phi} = 0$$

$$H^{2}(t, \mathbf{x}) = \frac{1}{3} \left(\frac{1}{2} \dot{\phi}^{2}(t, \mathbf{x}) + V(\phi(t, \mathbf{x})) \right)$$

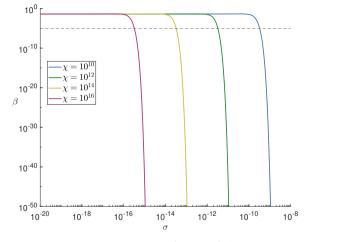
$$(2)$$

The separate universe approach indicates that, for long wavelengths, each point in space follows its own K-G and Friedmann equation i.e.

However incorporating the GR momentum constraint reduces the problem to first order:

$$\ddot{\phi}(t,\mathbf{x}) + 3H(t,\mathbf{x})\dot{\phi}(t,\mathbf{x}) + V_{,\phi} = 0 \quad \rightarrow \quad \frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{2}{H(\phi)}\frac{\mathrm{d}H(\phi)}{\mathrm{d}\phi} \tag{1}$$

$$H^{2}(t,\mathbf{x}) = \frac{1}{3}\left(\frac{1}{2}\dot{\phi}^{2}(t,\mathbf{x}) + V(\phi(t,\mathbf{x}))\right) \quad \rightarrow \quad \left(\frac{\mathrm{d}H(\phi)}{\mathrm{d}\phi}\right)^{2} = \frac{3}{2}H^{2}(\phi) - \frac{1}{2}V(\phi) \tag{2}$$


The Ultra Slow-Roll region

Define the distance travelled by classical drift, $\Delta \phi_{cl}$, and the length of the plateau, $\Delta \phi_{pl}$, as:

$$\Delta \phi_{cl} \equiv \phi_{in} - \phi_0 = \sqrt{\epsilon_{in}/3}, \quad \Delta \phi_{pl} \equiv \phi_{in} - \phi_e \tag{3}$$

Figure: Scenario A (left) corresponding to $\Delta \phi_{pl} \leq \Delta \phi_{cl}$ and Scenario B (right) corresponding to $\Delta \phi_{pl} > \Delta \phi_{cl}$. The Plateau is at a height $V_0 = v_0 \cdot 24\pi^2 M_{Pl}^4$

eta for $\Delta\phi_{pl} < \Delta\phi_{cl}$

Figure: How the mass fraction, β , depends on $\sigma \equiv \frac{\Delta \phi_{cl} - \Delta \phi_{pl}}{\Delta \phi_{cl}}$ for four values of $\chi \equiv \sqrt{\frac{3}{2v_0}} \Delta \phi_{cl}$

No free diffusion

Before the inflaton can enter a period of free diffusion, PBHs will be overproduced

Ashley Wilkins (Newcastle University)

No free diffusion

Before the inflaton can enter a period of free diffusion, PBHs will be overproduced

Classically dominated evolution

PBHs will be overproduced before the inflaton's evolution is dominated by quantum diffusion

Ashley Wilkins (Newcastle University)

No free diffusion without overproducing PBHs

First EuCAPT Annual Symposium 6 / 6