Phenomenology of heavy-ion collisions

Boris Tomášik

FNSPE, České vysoké učení technické, Praha, Czech Republic and Univerzita Mateja Bela, Banská Bystrica, Slovakia
boris.tomasik@cern.ch

THOR School
Jahorina, Bosnia and Hercegovina
20.1.2020
$\sqrt[4]{4}$

The goal of studies with heavy-ion collisions

To study the properties of strongly interacting matter in extreme conditions.

- Equation of State (complementary to neutron stars and their mergers)
- phase transition(s), critical point
- transport coefficients:
- shear and bulk viscosity
- momentum transfer from hard parton to medium (\hat{q})
- ...

To learn how the created matter looks like

- temperature, pressure, volume, evolution, ...
- vorticity (most vortical fluid)
- emergent hydrodynamics (why hydro works, when it should not)
- ...

The roadmap for these studies: the phase diagram

μ_{B} : baryochemical potential ratio of the numbers of baryons to antibaryons: $B / \bar{B} \propto \exp \left(2 \mu_{B} / T\right)$

The phase diagram: points and transitions

plot: Heng-Tong Ding @ Quark Matter 2019

Smooth crossover observed the lattice

[S. Borsanyi, et al., JHEP 11 (2010) 077]

The evolution of a heavy-ion collision 1

Before the collision

- (highly) Lorentz contracted nuclei approach
γ between 1 and 2750
- geometry important for later evolution

The evolution of a heavy-ion collision 2

Production of quanta, "energy transformation"

- low $\sqrt{s_{N N}}$
- low $\sqrt{s_{N N}}$ hadronic mechanisms
- gradual as nuclei pass through each other
- high $\sqrt{s_{N N}}$
- partonic, depends on parton distributions
- nuclear effects on parton distributions
- quickly emerging hydrodynamics behaviour
- setting up initial conditions for collective behaviour
- crucial for (some of) later correlations

The evolution of a heavy-ion collision 3

Flowing of hot (deconfined) matter

- expansion!
- (s)QGP for $\sqrt{s_{N N}}$ above...
- (surprisingly) well described by hydrodynamic models (particularly if long in the QGP phase)
- properties of matter clearly enter modelling
- Equation of State
- viscosities

The evolution of a heavy-ion collision 4

 Hadronisation and hadron gas

- chemical freeze-out happens here
- gas of interacting hadrons and resonances (HRG)
- suitably described by transport models
- continues the strong expansion
- seems to start in chemical equilibrium and get out of this equilibrium
- acts like "firewall" for the deconfined fireball

The evolution of a heavy-ion collision 5

Freeze-out

- Hadrons produced with their final state momenta and correlations
- Happens gradually
- sometimes modelled as sudden process (Cooper-Frye formalism)

The evolution of heavy-ion collision: summary

The evolution of heavy-ion collision: summary

The evolution of heavy-ion collision: summary

The evolution of heavy-ion collision: summary

The evolution of heavy-ion collision: summary

4. Hadronisation

The evolution of heavy-ion collision: summary

The space-time diagram of the evolution

Space-time parametrisation: the Milne coordinates

More suitable for longitudinally rapidly expanding systems: longitudinal proper time

$$
\tau=\sqrt{t^{2}-z^{2}}
$$

space-time rapidity

$$
\eta=\frac{1}{2} \ln \frac{t+z}{t-z}
$$

Inverse transformation

$$
\begin{aligned}
& t=\tau \cosh \eta \\
& z=\tau \sinh \eta
\end{aligned}
$$

Momentum parametrisation

4-momentum of a particle with the mass m :

- transverse momentum p_{t}
- azimuthal angle ϕ
- transverse mass

$$
m_{t}=\sqrt{m^{2}+p_{t}^{2}}
$$

- rapidity

$$
y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
$$

Momentum parametrisation:

$$
p=(E, \vec{p})=\left(m_{t} \cosh y, p_{t} \cos \phi, p_{t} \sin \phi, m_{t} \sinh y\right)
$$

Experimental proxy for the rapidity: pseudorapidity (same letter η used :-()

$$
\eta=\frac{1}{2} \ln \frac{|p|+p_{z}}{|p|-p_{z}}=-\ln \tan \frac{\theta}{2}
$$

easy to measure, since θ is the angle between \vec{p} and the beam good approximation for $|p| \gg m$

Typical energies, sizes, times

Typical energies, sizes, times

- energy of central collision of $\mathrm{Pb}+\mathrm{Pb}$ at the LHC (CERN): $208 \times 5.5=1144 \mathrm{TeV} \approx 0,2 \mathrm{~mJ}$ (energy of a flying hornet)

Typical energies, sizes, times

- energy of central collision of $\mathrm{Pb}+\mathrm{Pb}$ at the LHC (CERN): $208 \times 5.5=1144 \mathrm{TeV} \approx 0,2 \mathrm{~mJ}$ (energy of a flying hornet)
- typical size of the fireball: $10^{-14} \mathrm{~m}(10 \mathrm{fm})$ (If QGP were as big as poppy seed, poppy seed would be as big as the Earth.)

Typical energies, sizes, times

- energy of central collision of $\mathrm{Pb}+\mathrm{Pb}$ at the LHC (CERN): $208 \times 5.5=1144 \mathrm{TeV} \approx 0,2 \mathrm{~mJ}$ (energy of a flying hornet)
- typical size of the fireball: $10^{-14} \mathrm{~m}(10 \mathrm{fm})$ (If QGP were as big as poppy seed, poppy seed would be as big as the Earth.)
- typical lifetime of the fireball: $10^{-22} \mathrm{~s}(10 \mathrm{fm} / \mathrm{c})$ (The time it takes for the light to pass through a nucleus.)

Collisions at different energies

net protons

charged hadrons

- Incoming baryon number is somewhat stopped with respect to beam rapidity.
- At sufficient energies, produced hadrons exhibit plateau in rapidity.

Mapping the phase diagram

conserved quantity: $B-\bar{B}$
higher collision energy \Rightarrow higher pair production $B \bar{B}$

$$
\Rightarrow \text { smaller } B / \bar{B} \Rightarrow \text { smaller } \mu_{B}
$$

μ_{B} also depends on rapidity

Centrality

- Each collision happens at different impact parameter b.
- Impact parameter b is not measurable.
- Nevertheless, b influences the geometry and future evolution

Side view Beam-line view

spectators: nucleons that did not interact participants: nucleons that did interact wounded nucleons: nucleons that did interact inelastically
figure: M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205

Optical Glauber model

Projected nuclear density

$$
\hat{T}_{A}(\vec{s})=\int \hat{\rho}\left(\vec{s}, z_{A}\right) d z_{A}
$$

Overlap function

$$
\hat{T}_{A B}(\vec{s})=\int \hat{T}_{A}(\vec{s}) \vec{T}_{B}(\vec{s}-\vec{b}) d^{2} s
$$

Number of binary NN collisions

$$
N_{\text {coll }}(\vec{s})=A B T_{A B}(\vec{s}) \sigma_{\text {inel }}^{N N}
$$

Number of wounded nucleons

$$
\begin{aligned}
N_{w}(\vec{s})= & A \int \hat{T}_{A}(\vec{s})\left\{1-\left[1-\hat{T}_{B}(\vec{s}-\vec{b}) \sigma_{\text {inel }}^{N N}\right]^{B}\right\} d^{2} s \\
& +B \int \hat{T}_{B}(\vec{s}-\vec{b})\left\{1-\left[1-\hat{T}_{A}(\vec{s}) \sigma_{\text {inel }}^{N N}\right]^{A}\right\} d^{2} s
\end{aligned}
$$

Monte-Carlo Glauber model

Even at the same \vec{s} the numbers of $N N$ collisions will fluctuate.

figure: M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205

Experimental determination of centrality

Multiplicity: $M \propto\left(\frac{1-\alpha}{2} N_{w}+\alpha N_{\text {coll }}\right)$
(α determined to fit centrality depence of multiplicity)
Use measurable quantities: $M, N_{\text {spect }}$, number of spectator neutrons
Multiplicita (200GeV)

[simulations Matěj Gajdoš, Grammar School Ustí nad Labem]

Observables: hadrons from the bulk fireball

Distribution of hadrons

We can obtain temperature at the kinetic freeze-out and the expansion velocity from transverse momentum spectra.
Example:

[STAR collaboration, Phys. Rev. C 96 (2017) 044904]

Thermal equilibrium in longitudinally expanding fireball

Emission function (pre-blast-wave model)

- longitudinal boost invariance $u^{\mu}=\gamma(1,0,0, z / t)=(\cosh \eta, 0,0, \sinh \eta)$
- surface of the cross-cut S
- integrate over all coordinates η
- energy of hadron in the fluid rest frame

$$
E^{*}=p^{\mu} u_{\mu}=m_{t} \cosh y \cosh \eta-m_{t} \sinh y \sinh \eta=m_{t} \cosh (\eta-y)
$$

$$
\begin{aligned}
& \frac{d N}{m_{t} d m_{t}} \propto S \int_{-\infty}^{\infty} \tau d \eta m_{t} \cosh (\eta-y) \exp \left(-\frac{p^{\mu} u_{\mu}}{T}\right) \\
& =S \int_{-\infty}^{\infty} \tau d \eta m_{t} \cosh (\eta-y) \exp \left(-\frac{m_{t} \cosh (\eta-y)}{T}\right) \\
& =S_{\tau} m_{t} K_{1}\left(\frac{m_{t}}{T}\right)
\end{aligned}
$$

Scaling in m_{t} !

Spectra from transversely expanding fireball

Hadrons for a given p_{t} are produced by corresponding region of homogeneity.
This enhances production of higher p_{t}, i.e. shorter wavelength $=$ blue shift

$T^{*} \approx T+m\left\langle v_{t}\right\rangle \Rightarrow$ obtain T and $\left\langle v_{t}\right\rangle$ from spectra of different sorts of identified particles

A simple formula for p_{t} spectra-blast-wave model

Transverse flow velocity $v_{t}(r)=\tanh \eta_{t}(r)$
$u^{\mu}=\left(\cosh \eta \cosh \eta_{t}(r), \cos \psi \sinh \eta_{t}(r), \sin \psi \sinh \eta_{t}(r), \sinh \eta \cosh \eta_{t}(r)\right)$
Energy in the fluid rest frame

$$
E^{*}=p^{\mu} u_{\mu}=m_{t} \cosh (\eta-y) \cosh \eta_{t}(r)-p_{t} \sinh \eta_{t}(r) \cos (\phi-\psi)
$$

Transverse momentum spectrum

$$
\begin{aligned}
& \frac{d N}{m_{t} d m_{t}} \\
& \propto \int_{-\infty}^{\infty} \tau d \eta \int_{0}^{R} r d r \int_{0}^{2 \pi} d \psi m_{t} \cosh (\eta-y) \Theta(R-r) \exp \left(-\frac{p^{\mu} u_{\mu}}{T}\right) \\
& \\
& \quad=2 \pi \tau m_{t} \int_{0}^{R} r d r K_{1}\left(\frac{m_{t} \cosh \eta_{t}(r)}{T}\right) I_{0}\left(\frac{p_{t} \sinh \eta_{t}(r)}{T}\right)
\end{aligned}
$$

Resonance contributions are missing here!

Analysis of the kinetic freeze-out

[I. Melo, B. Tomáśik, J. Phys. G to appear, arXiv:1908.03023 [nucl-th]]

- a fit with the blast-wave model

$$
\begin{gathered}
S(x, p) d^{4} x=g_{i} \frac{m_{t} \cosh (\eta-y)}{(2 \pi)^{3}}\left(\exp \left(\frac{p_{\mu} u^{\mu}-\mu_{i}}{T_{k}}\right)+s_{i}\right)^{-1} \\
\theta\left(1-\frac{r}{R}\right) \times r d r d \varphi \delta\left(\tau-\tau_{0}\right) \tau d \tau d \eta \\
E \frac{d^{3} N}{d p^{3}}=\int_{\Sigma} S(x, p) d^{4} x
\end{gathered}
$$

- transverse velocity

$$
v_{t}=\tanh \eta_{t}=\eta_{f}\left(\frac{r}{R}\right)^{n}
$$

- contributions from resonance decays included
- partial chemical equilibrium: chemical potentials for each species

Excitation functions of the freeze-out parameters

The parameters are correlated

$$
\sqrt{s_{N N}}=7.7 \mathrm{GeV}
$$

Contributions from the resonances

Relative contributions to p_{t} spectra pions

protons

Azimuthal anisotropy of hadronic momentum distributions

- parametrized by Fourier expansion

$$
\frac{d N}{p_{t} d p_{t} d y d \phi}=\frac{1}{2 \pi} \frac{d N}{p_{t} d p_{t} d y}\left(1+2 \sum_{n=1}^{\infty} v_{n}\left(p_{t}, y\right) \cos \left(n\left(\phi-\phi_{n}\right)\right)\right)
$$

- summation over many events in symmetric collisions at midrapidity \Rightarrow symmetry constraints: $\phi_{n}=0, n=2,4,6, \ldots$
- all v_{n} 's non-vanishing in individual events
- may be a result of stronger blueshift in some directions

Examples of data

[ALICE collab: Phys. Lett. B 708 (2012) 249]

[CMS collab: JHEP 02 (2014) 088]

From azimuthal anisotropy to momentum anisotropy

- expansion accelerates due to pressure gradients
- higher $\nabla p \Rightarrow$ stronger expansion

- response to pressure: depends on EoS and transport coefficients
- inhomogeneities in real collisions due to event-by-event fluctuations

[B. Schenke, S. Jeon, C. Gale, PRL106 (2011) 042301]

Summary

- we can map the QCD phase diagram with colliding nuclei at different energies
- gross features of particle production are statistical
- expansion, including its anisotropies, can be mapped via hadron distributions
- this brings us to study the properties of QCD matter

