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and Univerzita Mateja Bela, Banská Bystrica, Slovakia
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The goal of studies with heavy-ion collisions

To study the properties of strongly interacting matter in extreme
conditions.

Equation of State
(complementary to neutron stars and their mergers)

phase transition(s), critical point

transport coefficients:

shear and bulk viscosity
momentum transfer from hard parton to medium (q̂)
. . .

To learn how the created matter looks like

temperature, pressure, volume, evolution, . . .

vorticity (most vortical fluid)

emergent hydrodynamics (why hydro works, when it should not)

. . .
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The roadmap for these studies: the phase diagram

T

μ
B

~ 156 MeV

hadron gas

quark-gluon-plasma

1 order PT

smooth crossover critical endpoint

µB : baryochemical potential
ratio of the numbers of baryons to antibaryons: B/B̄ ∝ exp (2µB/T )
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The phase diagram: points and transitions
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TCEP
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Tpc : 156.5(1.5)MeV, chiral crossover T at μB=0

QCD phase diagram in 3D: quark mass, μB, T

Random Matrix Model & NJL suggests:  

Patrick Steinbrecher, QM2018, 
Bazavov et al., [HotQCD] Phys. Lett. B795 (2019) 15

0
T 0

c (µB)              decreases as μB up to NLO from LQCD 
O. Kaczmarek et al., PRD83 (2011) 014504
P. Hegde & HTD, PoS LATTICE2015 (2016) 141

plot: Heng-Tong Ding @ Quark Matter 2019
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Smooth crossover observed the lattice

Figure 11: The energy density normalized by T 4 as a function of the temperature on Nt = 6, 8
and 10 lattices. The Stefan-Boltzmann limit ϵSB = 3pSB is indicated by an arrow.

Figure 12: The entropy density normalized by T 3 as a function of the temperature on Nt = 6, 8
and 10 lattices. The Stefan-Boltzmann limit sSB = 4pSB/T is indicated by an arrow.

– 17 –

[S. Borsanyi, et al., JHEP 11 (2010) 077]
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The evolution of a heavy-ion collision 1

Before the collision

(highly) Lorentz contracted nuclei
approach
γ between 1 and 2750

geometry important for later
evolution
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The evolution of a heavy-ion collision 2

Production of quanta, “energy transformation”

low
√
sNN

low
√
sNN hadronic mechanisms

gradual as nuclei pass through each
other

high
√
sNN

partonic, depends on parton
distributions
nuclear effects on parton
distributions
quickly emerging hydrodynamics
behaviour

setting up initial conditions for
collective behaviour

crucial for (some of) later correlations
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The evolution of a heavy-ion collision 3

Flowing of hot (deconfined) matter

expansion!

(s)QGP for
√
sNN above . . .

(surprisingly) well described by
hydrodynamic models
(particularly if long in the QGP
phase)

properties of matter clearly enter
modelling

Equation of State
viscosities
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The evolution of a heavy-ion collision 4

Hadronisation and hadron gas

chemical freeze-out happens here

gas of interacting hadrons and
resonances (HRG)

suitably described by transport
models

continues the strong expansion

seems to start in chemical equilibrium
and get out of this equilibrium

acts like “firewall” for the deconfined
fireball
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The evolution of a heavy-ion collision 5

Freeze-out

Hadrons produced with their final
state momenta and correlations

Happens gradually

sometimes modelled as sudden
process (Cooper-Frye formalism)

Boris Tomášik (ČVUT & UMB) Phenomenology of HICs 20.1.2020 10 / 34



The evolution of heavy-ion collision: summary

1. Before the collision 2. Production of quanta 3. QGP

4. Hadronisation 5. Freeze-out
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The space-time diagram of the evolution
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Space-time parametrisation: the Milne coordinates

More suitable for longitudinally rapidly expanding systems:

longitudinal proper time

τ =
√
t2 − z2

space-time rapidity

η =
1

2
ln

t + z

t − z
z [fm]

t [fm/c]
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Inverse transformation

t = τ cosh η

z = τ sinh η
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Momentum parametrisation

4-momentum of a particle with the mass m:

transverse momentum pt
azimuthal angle φ
transverse mass

mt =
√
m2 + p2

t

rapidity

y =
1

2
ln

E + pz
E − pz

Momentum parametrisation:

p = (E , ~p) = (mt cosh y , pt cosφ, pt sinφ,mt sinh y)

Experimental proxy for the rapidity: pseudorapidity (same letter η used :-( )

η =
1

2
ln
|p|+ pz
|p| − pz

= − ln tan
θ

2

easy to measure, since θ is the angle between ~p and the beam
good approximation for |p| � m
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Typical energies, sizes, times

energy of central collision of Pb+Pb at the LHC (CERN):
208× 5.5 = 1144 TeV ≈ 0,2 mJ (energy of a flying hornet)

typical size of the fireball: 10−14 m (10 fm)
(If QGP were as big as poppy seed, poppy seed would be as big as the
Earth.)

typical lifetime of the fireball: 10−22 s (10 fm/c)
(The time it takes for the light to pass through a nucleus.)
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Collisions at different energies

net protons
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Incoming baryon number is somewhat stopped with respect to beam
rapidity.

At sufficient energies, produced hadrons exhibit plateau in rapidity.
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Mapping the phase diagram

conserved quantity: B − B̄
higher collision energy ⇒ higher pair production BB̄

⇒ smaller B/B̄ ⇒ smaller µB
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µB also depends on rapidity
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Centrality

Each collision happens at different impact parameter b.

Impact parameter b is not measurable.

Nevertheless, b influences the geometry and future evolution

ANRV326-NS57-08 ARI 14 September 2007 15:14
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Figure 3
Schematic representation of
the optical Glauber model
geometry, with transverse
(a) and longitudinal
(b) views.

distinction between the target and projectile nuclei is a matter of convenience). We
focus on the two flux tubes located at a displacement s with respect to the center
of the target nucleus and a distance s − b from the center of the projectile. During
the collision these tubes overlap. The probability per unit transverse area of a given
nucleon being located in the target flux tube is T̂A(s) =

∫
ρ̂A(s, zA)d zA, where ρ̂A (s, zA)

is the probability per unit volume, normalized to unity, for finding the nucleon at
location (s, zA). A similar expression follows for the projectile nucleon. The product
T̂A(s)T̂B (s − b) d 2s then gives the joint probability per unit area of nucleons being
located in the respective overlapping target and projectile flux tubes of differential
area d 2s . Integrating this product over all values of s defines the thickness function
T̂ (b), with

T̂AB (b) =
∫

T̂A (s) T̂B (s − b) d 2s . 3.

Notice that T̂ (b) has the unit of inverse area. We can interpret this as the effective
overlap area for which a specific nucleon in A can interact with a given nucleon in
B. The probability of an interaction occurring is then T̂ (b) σ NN

inel , where σ NN
inel is the

inelastic nucleon-nucleon cross section. Elastic processes lead to very little energy
loss and are consequently not considered in the Glauber model calculations. Once the
probability of a given nucleon-nucleon interaction has been found, the probability
of having n such interactions between nuclei A (with A nucleons) and B (with B
nucleons) is given as a binomial distribution:

P (n , b) =
(

AB
n

) [
T̂AB (b) σ NN

inel

]n [
1 − T̂AB (b) σ NN

inel

]AB−n
, 4.

where the first term is the number of combinations for finding n collisions out
of AB possible nucleon-nucleon interactions, the second term the probability for
having exactly n collisions, and the last term the probability of exactly AB − n
misses.
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spectators: nucleons that did not interact

participants: nucleons that did interact

wounded nucleons: nucleons that did interact inelastically

figure: M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205
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Optical Glauber model

Projected nuclear density

T̂A(~s) =

∫
ρ̂(~s, zA)dzA

Overlap function

T̂AB(~s) =

∫
T̂A(~s) ~TB(~s − ~b)d2s

Number of binary NN collisions

Ncoll(~s) = ABTAB(~s)σNN
inel

Number of wounded nucleons

Nw (~s) = A

∫
T̂A(~s)

{
1−

[
1− T̂B(~s − ~b)σNN

inel

]B}
d2s

+B

∫
T̂B(~s − ~b)

{
1−

[
1− T̂A(~s)σNN

inel

]A}
d2s
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distinction between the target and projectile nuclei is a matter of convenience). We
focus on the two flux tubes located at a displacement s with respect to the center
of the target nucleus and a distance s − b from the center of the projectile. During
the collision these tubes overlap. The probability per unit transverse area of a given
nucleon being located in the target flux tube is T̂A(s) =

∫
ρ̂A(s, zA)d zA, where ρ̂A (s, zA)

is the probability per unit volume, normalized to unity, for finding the nucleon at
location (s, zA). A similar expression follows for the projectile nucleon. The product
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loss and are consequently not considered in the Glauber model calculations. Once the
probability of a given nucleon-nucleon interaction has been found, the probability
of having n such interactions between nuclei A (with A nucleons) and B (with B
nucleons) is given as a binomial distribution:

P (n , b) =
(

AB
n

) [
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, 4.
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distinction between the target and projectile nuclei is a matter of convenience). We
focus on the two flux tubes located at a displacement s with respect to the center
of the target nucleus and a distance s − b from the center of the projectile. During
the collision these tubes overlap. The probability per unit transverse area of a given
nucleon being located in the target flux tube is T̂A(s) =

∫
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overlap area for which a specific nucleon in A can interact with a given nucleon in
B. The probability of an interaction occurring is then T̂ (b) σ NN

inel , where σ NN
inel is the

inelastic nucleon-nucleon cross section. Elastic processes lead to very little energy
loss and are consequently not considered in the Glauber model calculations. Once the
probability of a given nucleon-nucleon interaction has been found, the probability
of having n such interactions between nuclei A (with A nucleons) and B (with B
nucleons) is given as a binomial distribution:

P (n , b) =
(

AB
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inel
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Monte-Carlo Glauber model

Even at the same ~s the numbers of NN collisions will fluctuate.
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Figure 4
A Glauber Monte Carlo event (Au+Au at √sNN = 200 GeV with impact parameter b = 6 fm)
viewed (a) in the transverse plane and (b) along the beam axis. The nucleons are drawn with
radius

√
σNN

inel /π/2. Darker circles represent participating nucleons.

a sequence of independent binary nucleon-nucleon collisions. That is, the nucleons
travel on straight-line trajectories, and the inelastic nucleon-nucleon cross section is
assumed to be independent of the number of collisions a nucleon underwent before. In
the simplest version of the Monte Carlo approach, a nucleon-nucleon collision takes
place if the nucleons’ distance d in the plane orthogonal to the beam axis satisfies

d ≤
√

σ NN
inel /π , 10.

where σ NN
inel is the total inelastic nucleon-nucleon cross section. As an alternative to

the black-disk nucleon-nucleon overlap function, for example, a Gaussian overlap
function can be used (31). An illustration of a GMC event for a Au+Au collision
with impact parameter b = 6 fm is shown in Figure 4. ⟨Npart⟩ and ⟨Ncoll⟩ and other
quantities are then determined by simulating many A+B collisions.

2.5. Differences between Optical and Monte Carlo Approaches
It is often overlooked that the various integrals used to calculate physical observables
in the Glauber model are predicated on a particular approximation known as the opti-
cal limit. This limit assumes that scattering amplitudes can be described by an eikonal
approach, where the incoming nucleons see the target as a smooth density. This ap-
proach captures many features of the collision process, but does not completely cap-
ture the physics of the total cross section. Thus, it tends to lead to distortions in the es-
timation of Npart and Ncoll compared to similar estimations using the GMC approach.
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figure: M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205
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Experimental determination of centrality

Multiplicity: M ∝ ( 1−α
2 Nw + αNcoll)

(α determined to fit centrality depence of multiplicity)
Use measurable quantities: M, Nspect , number of spectator neutrons

            b [simulations Matěj Gajdoš, Grammar School Ust́ı nad Labem]
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Observables: hadrons from the bulk fireball
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Distribution of hadrons

We can obtain temperature at the kinetic freeze-out and the expansion
velocity from transverse momentum spectra.
Example:
BULK PROPERTIES OF THE MEDIUM PRODUCED IN . . . PHYSICAL REVIEW C 96, 044904 (2017)
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FIG. 16. Same as Fig. 12 but for Au+Au collisions at
√

sNN = 39 GeV.

B. Centrality dependence of particle production

1. Particle yields (d N/d y)

Figure 17 shows the comparison of collision centrality
dependence of dN/dy of π ± , K ± , p, and p̄, normalized
by ⟨Npart⟩/2, among the results at

√
sNN = 7.7, 11.5, 19.6, 27,

and 39 GeV, and previously published results at
√

sNN = 62.4
and 200 GeV from the STAR experiment [11– 14,43,48]. The
yields of charged pions, kaons, and antiprotons decrease with
decreasing collision energy. However, the yield of protons is
the highest for the lowest energy of 7.7 GeV, which indicates
the highest baryon density at midrapidity at this energy. Proton
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FIG. 17. Centrality dependence of dN/dy normalized by ⟨Npart⟩/2 for (a) π+, (b) π − , (c) K+, (d) K − , (e) p, and (f) p̄ at midrapidity
(|y | < 0.1) in Au+Au collisions at

√
sNN = 7.7, 11.5, 19.6, 27, and 39 GeV. Results are compared with published results in Au+Au collisions

at
√

sNN = 62.4 and 200 GeV [43,48]. Errors shown are the quadrature sum of statistical and systematic uncertainties. For clarity, ⟨Npart⟩
uncertainties are not added in quadrature.

044904-13

[STAR collaboration, Phys. Rev. C 96 (2017) 044904]
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Thermal equilibrium in longitudinally expanding fireball

Emission function (pre-blast-wave model)

longitudinal boost invariance uµ = γ(1, 0, 0, z/t) = (cosh η, 0, 0, sinh η)

surface of the cross-cut S

integrate over all coordinates η

energy of hadron in the fluid rest frame

E∗ = pµuµ = mt cosh y cosh η −mt sinh y sinh η = mt cosh(η − y)

dN

mtdmt
∝ S

∫ ∞

−∞
τdηmt cosh(η − y) exp

(
−pµuµ

T

)

= S

∫ ∞

−∞
τdηmt cosh(η − y) exp

(
−mt cosh(η − y)

T

)

= SτmtK1

(mt

T

)

Scaling in mt !
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Spectra from transversely expanding fireball

Hadrons for a given pt are produced by corresponding region of
homogeneity.
This enhances production of higher pt , i.e. shorter wavelength = blue shift

High pt

low pt

Transverse flow
No transverse flow

dN
/p

t d
p

t
pt

T ∗ ≈ T + m〈vt〉 ⇒ obtain T and 〈vt〉 from spectra of different sorts of
identified particles
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A simple formula for pt spectra—blast-wave model

Transverse flow velocity vt(r) = tanh ηt(r)

uµ = (cosh η cosh ηt(r), cosψ sinh ηt(r), sinψ sinh ηt(r), sinh η cosh ηt(r))

Energy in the fluid rest frame

E ∗ = pµuµ = mt cosh(η − y) cosh ηt(r)− pt sinh ηt(r) cos(φ− ψ)

Transverse momentum spectrum

dN

mtdmt

∝
∫ ∞

−∞
τdη

∫ R

0
r dr

∫ 2π

0
dψmt cosh(η − y) Θ(R − r) exp

(
−pµuµ

T

)

= 2πτmt

∫ R

0
r dr K1

(
mt cosh ηt(r)

T

)
I0

(
pt sinh ηt(r)

T

)

Resonance contributions are missing here!
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Analysis of the kinetic freeze-out

[I. Melo, B. Tomášik, J. Phys. G to appear, arXiv:1908.03023 [nucl-th]]

a fit with the blast-wave model

S(x , p) d4x = gi
mt cosh(η − y)

(2π)3

(
exp

(
pµu

µ − µi
Tk

)
+ si

)−1

θ
(

1− r

R

)
× r dr dϕ δ(τ − τ0) τ dτ dη

E
d3N

dp3
=

∫

Σ
S(x , p) d4x

transverse velocity

vt = tanh ηt = ηf

( r

R

)n

contributions from resonance decays included

partial chemical equilibrium:
chemical potentials for each species
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Excitation functions of the freeze-out parameters
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The parameters are correlated
η

0.092 0.104 0.116
Tkin

0.52

0.67

n

0.092 0.104 0.116
Tkin

0.3

0.9

n

0.52 0.595 0.67
η

0.3

0.9

√
sNN = 7.7 GeV
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Contributions from the resonances

Relative contributions to pt spectra
pions
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Azimuthal anisotropy of hadronic momentum distributions

parametrized by Fourier expansion

dN

pt dpt dy dφ
=

1

2π

dN

pt dpt dy

(
1 + 2

∞∑

n=1

vn(pt , y) cos (n(φ− φn))

)

summation over many events in symmetric collisions at midrapidity
⇒ symmetry constraints: φn = 0, n = 2, 4, 6,. . .

all vn’s non-vanishing in individual events

may be a result of stronger blueshift in some directions
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Examples of data
ALICE Collaboration / Physics Letters B 708 (2012) 249–264 255

Fig. 6. (Color online.) The global-fit parameters, vn{GF}, for 2 ! n ! 5. Statistical uncertainties are represented by error bars on the points, while systematic uncertainty is
depicted by open rectangles.

Fig. 7. (Color online.) High-pT fit examples in 0–20% central events for n = 1 to 4. Although all datapoints are shown for pt
T > 5 GeV/c, the fit range includes only the six

points with pa
T > 5 GeV/c.

To evaluate the systematic uncertainty, the global fit procedure
is performed three times for each n and centrality bin: once on
the measured Vn! points (leading to the red curves in Fig. 5),
and once on the upper and lower bounds of the systematic er-
ror bars (resulting in black dashed curves). The vn{GF} systematic
error is then assigned as half the difference. The resulting uncer-
tainties are shown as open boxes in Fig. 6 and Fig. 11, which are
discussed in the following sections.

5. Global fit results

In the n = 2 case (Fig. 5, top), the fit agrees well with the data
points at low pt

T and pa
T , but diverges with increasing pa

T for each
pt

T interval. Where disagreement occurs, the fit is systematically
lower than the points. In contrast, for n = 3, the fit does not fol-
low the points that drop sharply to negative values at the highest

momenta. This is also observed for n = 5, though with poorer sta-
tistical precision.

The global fit is driven primarily by lower particle pT , where
the smaller statistical uncertainties provide a stronger constraint
for χ2 minimization. The disagreement between data and the fit,
where pt

T and pa
T are both large, points to the breakdown of the

factorization hypothesis; see also Fig. 3 and the accompanying dis-
cussion.

The factorization hypothesis appears to hold for n ! 2 at low
pa

T (" 2 GeV/c) even for the highest pt
T bins. The Vn! values

for these cases are small relative to those measured at higher
pa

T , and remain constant or even decrease in magnitude as pt
T

is increased above 3–4 GeV/c. V 2! dominates over the other co-
efficients, and the n > 3 terms are not significantly greater than
zero. This stands in contrast to the high-pt

T , high-pa
T case, where

it was demonstrated in Fig. 3 that dijet correlations require signif-

[ALICE collab: Phys. Lett. B 708 (2012) 249]
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correspond to the systematic uncertainties.

higher pT, e.g., up to about 40% for pT ∼ 4 GeV/c, while the low pT region shows a good

agreement between the two pref
T ranges. A detailed study of factorization breakdown for

eq. (4.6) as well as its physical implication is presented in section 5.3, which is in agreement

with the discrepancy observed in figure 3.

The pT-averaged vn values (with pref
T of 1–3 GeV/c) weighted by the efficiency-corrected

charged-hadron yield, over the pT range from 0.3 to 3.0 GeV/c, are shown in figure 4 as a

– 10 –

[CMS collab: JHEP 02 (2014) 088]
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From azimuthal anisotropy to momentum anisotropy

expansion accelerates due to
pressure gradients

higher ∇p ⇒ stronger
expansion

response to pressure:
depends on EoS and transport
coefficients

inhomogeneities in real
collisions due to event-by-event
fluctuations
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after τ = 6 fm/c for the ideal case (middle) and with η/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious effects.

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.

We follow [15] and define an event plane through the
angle

ψn =
1

n
arctan

⟨pT sin(nφ)⟩
⟨pT cos(nφ)⟩ , (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coefficients can be computed using

vn = ⟨cos(n(φ− ψn))⟩ . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2

max−b2
min), where bmin and bmax depend

on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

√
σNN/π, where σNN is the in-

elastic nucleon-nucleon cross-section, which at top RHIC
energy of

√
s = 200AGeV is σNN = 42 mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width σ0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|ηs| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.

In Fig. 1 we show the energy density distribution in
the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time τ0 = 0.4 fm/c and at time
τ = 6 fm/c for η/s = 0 and η/s = 0.16. This clearly
shows the effect of dissipation.

We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypT dpT dφp
= gi

∫

Σ

f(uµpµ)pµd3Σµ , (11)

where gi is the degeneracy of particle species i, and Σ
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2π)3
1

exp((uµpµ − µi)/TFO) ± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = f0(1 ± f0)p
αpβWαβ

1

2(ϵ+ P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice δf ∼ p2 is not unique [32].

The algorithm used to determine the freeze-out surface
Σ has been presented in [16]. It is very efficient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-τ -plane in the vicinity of
y = 0 fm and ηs = 0 for two different initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-τ plane.

We include resonances up to the φ-meson. We found
that the pseudorapidity dependence of both v2 and v3 is
affected notably by the inclusion of resonance decays, im-
proving the agreement of v2(ηp) with data significantly.

[B. Schenke, S. Jeon, C. Gale, PRL106 (2011) 042301]
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Summary

we can map the QCD phase diagram with colliding nuclei at different
energies

gross features of particle production are statistical

expansion, including its anisotropies, can be mapped via hadron
distributions

this brings us to study the properties of QCD matter
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