Phenomenology of heavy-ion collisions Part 2

Boris Tomášik

FNSPE, České vysoké učení technické, Praha, Czech Republic and Univerzita Mateja Bela, Banská Bystrica, Slovakia

boris.tomasik@cern.ch

THOR School Jahorina, Bosnia and Hercegovina

23.1.2020

Observables: hadrons from the bulk fireball

Statistical production of hadrons

Enrico Fermi, 1950s

Suppose:

- we have collision of two hadrons in which energy E is released
- there is only one kind of hadrons (pions) which can be produced
- the matrix elements for all channels are constant, i.e. no microscopic mechanisms are at work

Then:

The probability to produce n hadrons is proportional to the total phase space occupied by states with n hadrons.

In this way, n grows with energy.

Statistical model of hadron gas

- gas of hadrons in chemical equilibrium
- global variables: *T*, *V*, chemical potentials for conserved quantum numbers
- for each hadron species: m_i , degeneracy g_i , Bose of Fermi
- chemical potential given by $\mu_i = B_i \mu_B + S_i \mu_S + I_{3,i} \mu_I$
- partition function for the species

$$\ln Z_i = \pm \frac{Vg_i}{2\pi^2} \int d^3 \vec{p} \ln (1 \pm \exp(-(E_i(m_i, p) - \mu_i)/T))$$

particle densities

$$n_i = \frac{N_i}{V} = -\frac{T}{V} \frac{d \ln Z_i}{d\mu_i} = \frac{g_i}{(2\pi)^3} \int d^3 \vec{p} \, \frac{1}{\exp((E_i - \mu_i)/T) \pm 1}$$

• for free hadrons this can be integrated

$$n_{i} = \frac{g_{i}}{2\pi^{2}}m_{i}^{2}T\sum_{n=1}^{\infty}\frac{(\pm 1)^{n-1}}{n}e^{n\mu_{i}/T}K_{2}\left(\frac{nm_{i}}{T}\right)$$

Statistical model: a few more details

- interacting gas: interactions included via inclusion of resonances [R. Dashen, S.K. Ma, J. Bernstein, Phys. Rev. 187 (1969) 345-370]
- to obtain final state hadron abundances after freeze-out, production from the decays of resonances must be included
- μ_S determined from strangeness neutrality, (positive μ_B leads to more Λ s than $\overline{\Lambda}$ s and thus to negative strangeness, which must be balanced by kaons)
- μ_I determined from the initial state
- sometimes fit to ratios, to get rid of the volume
- other details of the model (depending on implementation)
 - list of included resonances
 - fugacity factors for strangeness (suppress both $S=\pm 1$ hadrons in same way)
 - fugacity factors for non-strange hadrons (quarks)
 - excluded volume corrections
 - . . .

Models: PBM& Stachel& comp., THERMUS, THERMINATOR, SHARE

Boris Tomášik (ČVUT & UMB)

Phenomenology of HICs

Example of a fit to data

[A. Andronic, P. Braun Munzinger, K. Redlich, J. Stachel: Nature 561 (2018) 321-330]

Parameters:

 $T_{CF} = 156.5 \pm 1.5$ MeV, $\mu_B = 0.7 \pm 3.8$ MeV, $V = 5280 \pm 410$ fm³

Collision energy dependence of the chemical freeze-out

[A. Andronic, P. Braun Munzinger, K. Redlich, J. Stachel: Nature 561 (2018) 321-330]

Chemical freeze-out in the phase diagram

[A. Andronic, P. Braun Munzinger, K. Redlich, J. Stachel: Nature 561 (2018) 321-330]

Boris Tomášik (ČVUT & UMB)

23.1.2020 8 / 21

I will not talk about Strangeness

Strangeness production must be enhanced in QGP.

[J. Rafelski, B. Müller, PRL 48 (1982) 1066] Thresholds

It is also suppressed in small systems.

[ALICE collab. Nature Physics 13 (2017) 535]

- $\bullet\,$ abundances of clusters are well described by a statistical model at ${\cal T}=156.5~{\rm MeV}$
- binding energy of a deuteron is 2.2 MeV
- the more appropriate mechanism for cluster production is coalescence (and it also works)

Questions:

- Can we distinguish which mechanism is at work here?
- What does it tell us when the statistical model also works?

Fluctuations of conserved charges ... (WHAT!?)

$$\langle N \rangle = \sum_{i} N_{i} P_{i} = \frac{\sum_{i} N_{i} w_{i}}{\sum_{i} w_{i}} = \frac{\sum_{i} N_{i} \exp\left(-\frac{E_{i} - \mu N_{i}}{T}\right)}{\sum_{i} \exp\left(-\frac{E_{i} - \mu N_{i}}{T}\right)} = \frac{\frac{\partial Z}{\partial \frac{\mu}{T}}}{Z} = \frac{\partial \ln Z}{\partial \frac{\mu}{T}}$$

Fluctuations of conserved charges ... (WHAT !?)

$$\langle N \rangle = \sum_{i} N_{i} P_{i} = \frac{\sum_{i} N_{i} w_{i}}{\sum_{i} w_{i}} = \frac{\sum_{i} N_{i} \exp\left(-\frac{E_{i}-\mu N_{i}}{T}\right)}{\sum_{i} \exp\left(-\frac{E_{i}-\mu N_{i}}{T}\right)} = \frac{\frac{\partial Z}{\partial \frac{\mu}{T}}}{Z} = \frac{\partial \ln Z}{\partial \frac{\mu}{T}}$$

Relativistic system:

- creation and annihilation of particle-antiparticle pairs
- study charges which are conserved in microscopic interactions
- fluctuations by exchange with the heatbath

Fluctuations of conserved charges ... (WHAT !?)

$$\langle N \rangle = \sum_{i} N_{i} P_{i} = \frac{\sum_{i} N_{i} w_{i}}{\sum_{i} w_{i}} = \frac{\sum_{i} N_{i} \exp\left(-\frac{E_{i}-\mu N_{i}}{T}\right)}{\sum_{i} \exp\left(-\frac{E_{i}-\mu N_{i}}{T}\right)} = \frac{\frac{\partial Z}{\partial \frac{\mu}{T}}}{Z} = \frac{\partial \ln Z}{\partial \frac{\mu}{T}}$$

Relativistic system:

- creation and annihilation of particle-antiparticle pairs
- study charges which are conserved in microscopic interactions
- fluctuations by exchange with the heatbath

mean baryon number

$$\langle B \rangle = rac{\partial \ln Z}{\partial rac{\mu_B}{T}}$$

Boris Tomášik (ČVUT & UMB)

Statistical physics: Fluctuations of a conserved charge

Higher moments of the (net) baryon number distribution obtained via derivatives of $\ln Z$:

$$\frac{\partial^2 \ln Z}{\partial \left(\frac{\mu}{T}\right)^2} = \langle N^2 \rangle - \langle N \rangle^2 = \mu_2 = \kappa_2 = \sigma^2 = VT^3 \chi_2$$

$$\frac{\partial^3 \ln Z}{\partial \left(\frac{\mu}{T}\right)^3} = \langle N^3 \rangle - 3 \langle N^2 \rangle \langle N \rangle + 2 \langle N \rangle^3 = \mu_3 = \kappa_3 = VT^3 \chi_3$$

$$\frac{\partial^4 \ln Z}{\partial \left(\frac{\mu}{T}\right)^4} = \langle N^4 \rangle - 4 \langle N^3 \rangle \langle N \rangle - 3 \langle N^2 \rangle^2 + 12 \langle N^2 \rangle \langle N \rangle^2 - 6 \langle N \rangle^4$$

$$= \mu_4 - 3\mu_2^2 = \kappa_4 = VT^3 \chi_4$$

Here:

~

- μ_i : central moments
- κ_i : central cumulants
- χ_i : susceptibilities

Boris Tomášik (ČVUT & UMB)

Other coefficients that characterise statistical distribution

Skewness:

$$S = \frac{\kappa_3}{\kappa_2^{3/2}} = \frac{\mu_3}{\sigma^3}$$

[Rodolfo Hermans on Wikipedia, and Wikipedia]

$$S\sigma = \frac{\kappa_3}{\kappa_2} = \frac{\mu_3}{\sigma^2} = \frac{\chi_3}{\chi_2}$$

$$\kappa\sigma^2 = \frac{\kappa_4}{\kappa_2} = \frac{\mu_4}{\sigma^2} - 3\sigma^2 = \frac{\chi_4}{\chi_2}$$

Kurtosis:

$$\kappa = \frac{\kappa_4}{\kappa_2^2} = \frac{\mu_4}{\mu_2^2} - 3$$

....

Why is this interesting?

Why is this interesting?

Because we look for the state of matter where $\ln Z$ changes dramatically (phase transition, crossover).

This should be visible via its derivatives.

Why is this interesting?

Because we look for the state of matter where $\ln Z$ changes dramatically (phase transition, crossover).

This should be visible via its derivatives. RA D, D

2

[A. Bazavov et al., Phys. Rev. D 96 (2017) 074510]

Boris Tomášik (ČVUT & UMB)

Phenomenology of HICs

23.1.2020 14 / 21

Why is this even more interesting?

Boris Tomášik (ČVUT & UMB)

Why is this even more interesting?

Because it could reveal the position of the critical point!

Why is this even more interesting?

Because it could reveal the position of the critical point! Example: susceptibilities in the Ising model (same universality class)

[J.W. Chen et al.: Phys. Rev. D 95 (2017) 014038]

Boris Tomášik (ČVUT & UMB)

Phenomenology of HICs

Why is this totally exciting?!

Why is this totally exciting?!

Because STAR collaboration measured data which no theoretical model can reproduce!

Why is this totally exciting?!

Because STAR collaboration measured data which no theoretical model can reproduce!

Net proton number fluctuations.

[STAR, PRL 112 (2014) 032302, CPOD2014, QM2015]

Huge increase of
$$\kappa\sigma^2 = \chi_4/\chi_2$$
 at $\sqrt{s_{NN}} = 7.7$ GeV.

No theoretical understanding, but look at A. Bzdak et al.

Measure the net proton number fluctuations

- baryon number susceptibilities χ_i^B calculated on the lattice
- enhancement of susceptibilities near the critical point
- susceptibilities are measurable as cumulants of baryon number distribution
- B-number not measurable, since no neutrons are measured
- Conflict!
 - susceptibilities are calculated in grand-canonical ensemble
 - cumulants are measured in real collisions which conserve *B*, have limited acceptance, and measure (almost) only protons

I will not talk about high p_t and jet quenching

[A.M. Sirunyan et al. (CMS collab.), PRL 123 (2019) 022001]

- suppression at high p_t due to quenching of hard partons by deconfined medium
- originally expected less quenching for heavy quarks (dead-cone effect, less gluon bremsstrahlung)
- needs the size and evolution of the flowing bulk in which partons are quenched
- (Experts in the room! Discussion)

Boris Tomášik (ČVUT & UMB)

I will not talk about back-reaction on the medium

But I can't help showing our results...:-)

Flows induced by hard partons merge and create azimuthally anisotropic distribution

Anisotropic flow in b = 0 collisions: (no jets, hot spots, jets)

[M. Schulc, B. Tomášik, Phys.Rev. C 90 (2014) 064910]

Boris Tomášik (ČVUT & UMB)

- we can map the QCD phase diagram with colliding nuclei at different energies
- gross features of particle production are statistical
- expansion, including its anisotropies, can be mapped via hadron distributions
- interaction of hard partons with the medium provides an important probe
- this brings us to study the properties of QCD matter

A list of questions/topics...

- How do we identify the critical point?
 - experimentally
 - theoretically
- Find a measurable smoking gun signature of chiral symmetry restoration.
- Link the knowledge about QCD matter with that coming from compact stars and their mergers.
- Arrive at unified description of both high p_t and low p_t production.