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Observables: hadrons from the bulk fireball
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Statistical production of hadrons

Enrico Fermi, 1950s

Suppose:

we have collision of two hadrons in which energy E is released

there is only one kind of hadrons (pions) which can be produced

the matrix elements for all channels are constant, i.e. no microscopic
mechanisms are at work

Then:
The probability to produce n hadrons is proportional to the total phase
space occupied by states with n hadrons.

In this way, n grows with energy.
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Statistical model of hadron gas

gas of hadrons in chemical equilibrium

global variables: T , V , chemical potentials for conserved quantum
numbers

for each hadron species: mi , degeneracy gi , Bose of Fermi

chemical potential given by µi = BiµB + SiµS + I3,iµI
partition function for the species

lnZi = ±Vgi
2π2

∫
d3~p ln (1± exp(−(Ei (mi , p)− µi )/T ))

particle densities

ni =
Ni

V
= −T

V

d lnZi

dµi
=

gi
(2π)3

∫
d3~p

1

exp((Ei − µi )/T )± 1

for free hadrons this can be integrated

ni =
gi

2π2
m2

i T
∞∑

n=1

(±1)n−1

n
enµi/TK2

(nmi

T

)
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Statistical model: a few more details

interacting gas: interactions included via inclusion of resonances
[R. Dashen, S.K. Ma, J. Bernstein, Phys. Rev. 187 (1969) 345-370]

to obtain final state hadron abundances after freeze-out, production
from the decays of resonances must be included

µS determined from strangeness neutrality,
(positive µB leads to more Λs than Λ̄s and thus to negative
strangeness, which must be balanced by kaons)

µI determined from the initial state

sometimes fit to ratios, to get rid of the volume
other details of the model (depending on implementation)

list of included resonances
fugacity factors for strangeness (suppress both S = ±1 hadrons in
same way)
fugacity factors for non-strange hadrons (quarks)
excluded volume corrections
. . .

Models: PBM& Stachel& comp., THERMUS, THERMINATOR, SHARE
Boris Tomášik (ČVUT & UMB) Phenomenology of HICs 23.1.2020 5 / 21



Example of a fit to data

[A. Andronic, P. Braun Munzinger, K. Redlich, J. Stachel: Nature 561 (2018) 321-330]

4

STATISTICAL HADRONIZATION OF LIGHT
QUARKS

The description of particle production in nucleus-
nucleus collisions in the framework of the statistical
hadronization approach is particulary transparent at the
LHC energy where the chemical freeze-out is quantified,
essentially, by the temperature TCF and the volume V
of the produced fireball.

The parameters of the statistical hadronization ap-
proach are obtained with considerable precision by com-
paring to the yields of particles measured by the ALICE
collaboration [54–60]. To match the measurement, the
calculations include all contributions from the strong and
electromagnetic decays of high-mass resonances. For ⇡±,
K±, and K0 mesons, the contributions from heavy fla-
vor hadron decays are also included. The measurement
uncertainty, �, is accounted for as the quadratic sum of
statistical and systematic uncertainties, see below.
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FIG. 1. Hadron abundances and statistical hadronization
model predictions. Here dN/dy values for di↵erent hadrons
measured at midrapidity are compared with the statistical
hadronization analysis. The data are from the ALICE collab-
oration for central Pb–Pb collisions at the LHC. The lower
panel shows the ratio of data and statistical hadronization
predictions with uncertainties determined only from the data.

For the most-central Pb–Pb collisions, the best de-
scription of the ALICE data on yields of particles in
one unit of rapidity at midrapidity, is obtained with
TCF = 156.5 ± 1.5 MeV, µB = 0.7 ± 3.8 MeV, and
V = 5280 ± 410 fm3. This result is an update of the
previous analysis from Ref. [45] using an extended and
final set of data. The standard deviations quoted here

are exclusively due to experimental uncertainties and do
not reflect the systematic uncertainties connected with
the model implementation, as discussed below.

Remarkably, the value of the chemical freeze-out tem-
perature TCF = 156.5± 1.5 MeV and the pseudo-critical
temperature, Tc = 154±9 MeV obtained in LQCD, agree
within errors. This implies that chemical freeze-out takes
place close to hadronization of the QGP, lending also sup-
port to the hadron-parton duality described by Eq. 2.

A comparison of the statistical hadronization results
obtained with the thermal parameters discussed above
and the ALICE data for particle yields is shown in Fig. 1.
Impressive overall agreement is obtained between the
measured particle yields and the statistical hadroniza-
tion analysis. The agreement spans nine orders of magni-
tude in abundance values, encompasses strange and non-
strange mesons, baryons including strange and multiply-
strange hyperons as well as light nuclei and hypernuclei
and their anti-particles. A very small value for the baryo-
chemical potential µB = 0.7 ± 3.8 MeV, consistent with
zero, is obtained, as expected by the observation of equal
production of matter and antimatter at the LHC [61].

The largest di↵erence between data and calculations
is observed for proton and antiproton yields, where a
deviation of 2.7� is obtained. This di↵erence is con-
nected with an unexpected and puzzling centrality de-
pendence of the ratio (p+ p̄)/(⇡+ +⇡�) [54], see, in par-
ticular, Fig. 9 of this reference. As discussed below, the
other ratios (hadrons/pions) increase towards more cen-
tral collisions until a plateau (the grand-canonical limit)
is reached. The peculiar behavior of the (p+p̄)/(⇡++⇡�)
at LHC energy is currently not understood. Arguments
that this might be connected to annihilation of baryons
in the hadronic phase after chemical freeze-out [62] are
not supported by the results of recent measurements of
the relative yields of strange baryons to pions [63].

A further consequence of the vanishing baryo-chemical
potential is that also the strangeness chemical potential
µS vanishes. This implies that the strangeness quan-
tum number plays no role anymore for the particle pro-
duction. In the fireball the yield of strange mesons
and (multi-)strange baryons is exclusively determined by
their mass M and spin degeneracy (2J + 1) in addition
to the temperature T .

The thermal origin of all particles including light nuclei
and anti-nuclei is particularly transparent when inspect-
ing the change of their yields with particle mass. This is
shown in Fig. 2 where the measured yields, normalized
to the spin degeneracy, are plotted as a function of the
mass M . This demonstrates explicitly that the normal-
ized yields exclusively depend on M and T . For heavy
particles (M � T ) without resonance decay contribu-
tions their normalized yield simply scales with mass as
M3/2 exp (�M/T ), illustrated by the nearly linear de-
pendence observed in the logarithmic representation of
Fig. 2. We note that, for the subset of light nuclei, the
statistical hadronization predictions are not a↵ected by
resonance decays. For these nuclei, a small variation in
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FIG. 2. Mass dependence of hadron yields compared with
predictions of the statistical hadronization model. Only par-
ticles, no anti-particles, are included and the yields are di-
vided by the spin degeneracy factor (2J + 1). Data are from
the ALICE collaboration for central Pb–Pb collisions at the
LHC. For the statistical hadronization approach, plotted are
the “total” yields, including all contributions from high-mass
resonances (for the ⇤ hyperon, the contribution from the elec-
tromagnetic decay ⌃0 ! ⇤�, which cannot be resolved ex-
perimentally, is also included), and the (“primordial”) yields
prior to strong and electromagnetic decays. For more details
see text.

temperature leads to a large variation of the yield, result-
ing in a relatively precise determination of the freeze-out
temperature Tnuclei = 159± 5 MeV, well consistent with
the value of TCF extracted above.

The incomplete knowledge of the structure and de-
cay probabilities of heavy mesonic and baryonic reso-
nances discussed above leads to systematic uncertainties
in the statistical hadronization approach. We note, from
Fig. 2, that the yields of the measured lightest mesons
and baryons, (⇡, K, p,⇤) are substantially increased rela-
tive to their primordial thermal production by such decay
contributions. For pions, e.g., the resonance decay con-
tribution amounts to 70%. For resonance masses larger
than 1.5 GeV the individual states start to strongly over-
lap [23]. Consequently, neither their number density nor
their decay probabilities can be determined well. Indeed,
recent LQCD results indicate that there are missing res-
onances compared to what is listed in [23]. The result-
ing theoretical uncertainties are di�cult to estimate but
are expected to be small since TCF is very small com-
pared to their mass. A conservative estimate is that
the resulting systematic uncertainty in TCF is at most
3%. This is consistent with the determination of TCF

using only particles whose yields are not influenced by

resonance decays, see above. Until now none of these
systematic uncertainties are taken into account in the
statistical hadronization analysis described here.

The rapidity densities of light (anti)-nuclei and hy-
pernuclei were actually predicted [64], based on the sys-
tematics of hadron production at lower energies. It is
nevertheless remarkable that such loosely bound objects
(the deuteron binding energy is 2.2 MeV, much less than
Tnuclei ⇡ 159 or TCF ⇡ Tc ⇡ 155 MeV) are produced
with temperatures very close to that of the phase bound-
ary at LHC energy, implying any further evolution of
the fireball has to be close to isentropic. For the (anti-
)hypertriton the situation is even more dramatic: this
object consists of a bound state of (p, n, ⇤), with a value
of only 130 ± 30 keV for the energy needed to remove
the ⇤ from it. This implies that the ⇤ particle is very
weakly bound to a deuteron, resulting in a value for the
root-mean-square size for this bound state of close to 10
fm, about the same size as that of the fireball formed in
the Pb–Pb collision.

The detailed production mechanism for loosely bound
states remains an open question. One, admittedly specu-
lative, possibility is that such objects, at QGP hadroniza-
tion, are produced as compact, colorless droplets of quark
matter with quantum numbers of the final state hadrons.
The concept of possible excitations of nuclear matter into
colorless quark droplets was considered already in [65].
In our context, these states should have a lifetime of 5
fm or longer, excitation energies of 40 MeV or less, for
evolution into the final state hadrons which are measured
in the detector. Since by construction they are initially
compact they would survive also a possible short-lived
hadronic phase after hadronization. This would be a
natural explanation for the striking observation of the
thermal pattern for these nuclear bound states emerging
from Figs. 1 and 2. Note that the observed thermal
nature of their production yields is very di�cult to rec-
oncile with the assumption that these states are formed
by coalescence of baryons, where the yield is proportional
to a coalescence factor introduced as the square of the
nuclear wave function, which actually di↵ers strongly for
the various nuclei [66, 67]. For a recent discussion of
the application of coalescence models to production of
loosely bound states, see [68].

One might argue that composite particles such as light
nuclei and hypernuclei should not be included in the
hadronic partition function described in Eq. 2. We note,
however, that all nuclei, including light, loosely bound
states, should result from the interaction of the funda-
mental QCD constituents. This is confirmed by recent
LQCD calculations, see [69].

The thermal nature of particle production in ultra-
relativistic nuclear collisions has been experimentally
verified not only at LHC energy, but also at the lower
energies of the RHIC, SPS and AGS accelerators. The
essential di↵erence is that, at these lower energies, the
matter-antimatter symmetry observed at the LHC is
lifted, implying non-vanishing values of the chemical po-

Parameters:
TCF = 156.5± 1.5 MeV, µB = 0.7± 3.8 MeV, V = 5280± 410 fm3
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Collision energy dependence of the chemical freeze-out

[A. Andronic, P. Braun Munzinger, K. Redlich, J. Stachel: Nature 561 (2018) 321-330]

TCP(
√
sNN) =

T lim
CF

1 + 13.46(
√
sNN)20/9

T lim
CF = 158.4± 1.4 MeV

µB(
√
sNN) =

a

1 + 0.288
√
sNN

a = 1307.5 MeV
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FIG. 3. Energy dependence of chemical freeze-out param-
eters TCF and µB . The results are obtained from the sta-
tistical hadronization analysis of hadron yields (at midra-
pidity, dN/dy, and in full phase space, 4⇡) for central col-
lisions at di↵erent energies. The parametrizations shown
are: TCF = T lim

CF /(1 + exp(2.60 � ln(
p

sNN)/0.45)), µB =

a/(1 + 0.288
p

sNN), with
p

sNN in GeV and T lim
CF = 158.4

MeV and a = 1307.5 MeV; the uncertainty of the ’limiting
temperature’, T lim

CF , determined from the fit of the 5 points
for the highest energies, is 1.4 MeV.

tentials. Furthermore, in central collisions at energies
below

p
sNN ⇡ 6 GeV the cross section for the produc-

tion of strange hadrons decreases rapidly, with the result
that the average strange hadron yields per collision can
be significantly below unity. In this situation, one needs
to implement exact strangeness conservation in the sta-
tistical sum in Eq. 2 and apply the canonical ensemble
for the conservation laws [70, 71]. Similar considerations
apply for the description of particle yields in peripheral
nuclear and elementary collisions. An interesting conse-
quence of exact strangeness conservation is a suppression
of strange particle yields when going from central to pe-
ripheral nucleus-nucleus collisions or from high multiplic-
ity to low multiplicity events in proton-proton or proton-
nucleus collisions. In all cases the suppression is further
enhanced with increasing strangeness content of hadron.
Sometimes, additional fugacity parameters gf are intro-
duced to account for possible non-equilibrium e↵ects of
strange and heavy flavor hadrons [44, 72]. These param-
eters modify the thermal yields of particles by factors

g
nf

f , where the power nf denotes the number of strange
or heavy quarks and anti-quarks in the hadron.

FIG. 4. Collision energy dependence of the relative abun-
dance of several hadron species. The data (symbols) are com-
piled in [73, 74] and are compared to statistical hadronization
calculations for the smooth parametrization of TCF and µB

as a function of energy shown in Fig. 3.

Experimental consequences of canonical thermody-
namics and strangeness conservation laws have been first
seen at SPS energy [75]. All above predictions are quali-
tatively confirmed by the striking new results from high
multiplicity proton-proton and p-Pb collisions from the
ALICE collaboration at LHC energy [63]. The data also
explicitly exhibit the plateau in strangeness production
when reaching Pb-Pb collisions which is expected when
the grand-canonical region is reached, further buttressing
the thermal analysis discussed above.

An intriguing observation, first made in [76], is that
the overall features of hadron production in e+e� annihi-
lations resemble that expected from a thermal ensemble
with temperature T ⇡ 160 MeV, once exact quantum
number conservation is taken into account. In these col-
lisions, quark-antiquark pairs are produced with produc-
tion yields that are not thermal but are well explained
by the electro-weak standard model, see, e.g., Table II
in [77]. Hadrons from these quark pairs (and some-
times gluons) appear as jets in the data. The underlying
hadronisation process can be well described using sta-
tistical hadronisation model ideas [77, 78]. These stud-
ies revealed further that strangeness production deviates
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Chemical freeze-out in the phase diagram

[A. Andronic, P. Braun Munzinger, K. Redlich, J. Stachel: Nature 561 (2018) 321-330]

7

significantly from a pure thermal production model and
that the quantitative description of the measured yields
is rather poor. Nevertheless, recognizable thermal fea-
tures in e+e� collisions, where equilibration should be
absent, may be a consequence of the generic nature of
hadronization in strong interactions.

From a statistical hadronization analysis of all mea-
sured hadron yields at various beam energies the detailed
energy dependence of the thermal parameters TCF and
µB has been determined [41, 51, 74, 79–82]. While µB de-
creases smoothly with increasing energy, the dependence
of TCF on energy exhibits a striking feature which is il-
lustrated in Fig. 3: TCF increases with increasing energy
(decreasing µB) from about 50 MeV to about 160 MeV,
where it exhibits a saturation for

p
sNN > 20 GeV. The

slight increase of this value compared to TCF = 156.5
MeV obtained at LHC energy is due to the inclusion of
points from data at RHIC energies, the details of this
small di↵erence are currently not fully understood.

The saturation of TCF observed in Fig. 3 lends sup-
port to the earlier proposal [48, 50, 83] that, at least
at high energies, the chemical freeze-out temperature is
very close to the QCD hadronization temperature [51],
implying a direct connection between data from relativis-
tic nuclear collisions and the QCD phase boundary. This
is in accord with the earlier prediction, already more than
50 years ago, by Hagedorn [84, 85] that hadronic mat-
ter cannot be heated beyond this limit. Whether there
is, at the lower energies, a critical end-point [86] in the
QCD phase diagram is currently at the focus of intense
theoretical [19] and experimental e↵ort [74].

To illustrate how well the thermal description of par-
ticle production in central nuclear collisions works we
show, in Fig. 4, the energy dependence (excitation func-
tion) of the relative abundance of several hadron species
along with the prediction using the statistical hadroniza-
tion approach and the smooth evolution of the param-
eters (see above). Because of the interplay between the
energy dependence of TCF and µB there are character-
istic features in these excitation functions. In particu-
lar, maxima appear at slightly di↵erent c.m. energies in
the K+/⇡+ and ⇤/⇡+ ratios while corresponding anti-
particle ratios exhibit a smooth behavior [87].

In the statistical approach in Eq. 2 and in the Boltz-
mann approximation, the density n(µB , T ) of hadrons
carrying baryon number B scales with the chemical po-
tential as n(µB , T ) / exp(BµB/T ). Consequently, the
ratios p/⇡+ and d/p scale as exp(µB/T ), whereas the
corresponding anti-particle ratios scale as exp(�µB/T ).
From Fig. 3, it is apparent that µB/TCF decreases with
collision energy, accounting for the basic features of par-
ticle ratios in the upper part of Fig. 4. On the other
hand, strangeness conservation unambigously connects,
for every T value, the strangeness- and baryo-chemical
potentials, µS = µS(µB). As a consequence, the yields
of K+ and K� increase and, respectively, decrease with
µB/T . At higher energies, where T and hence pion densi-
ties saturate, the ⇤/⇡+ and K+/⇡+ ratios are decreasing

with energy (see lower part of Fig. 3).

We further note that, for energies beyond that of the
LHC, the thermal parameter TCF is determined by the
QCD pseudo-critical temperature and the value of µB

vanishes. Combined with the energy dependence of over-
all particle production [88] in central Pb-Pb collisions
this implies that the statistical hadronization model pre-
diction of particle yields at any energy, including those
at the possible Future Circular Collider (FCC) [89] or in
ultra-high energy cosmic ray collisions [90], can be made
with an estimated precision of better than 15%.

Since the statistical hadronization analysis at each
measured energy yields a pair of (TCF ,µB) values, these
points can be used to construct a T vs. µB diagram,
describing phenomenological constraints on the phase
boundary between hadronic matter and the QGP, see
Fig. 5. Note that the points at low temperature seem
to converge towards the value for ground state nuclear
matter (µB = 931 MeV). As argued in [52] this limit is
not necessarily connected to a phase transition. While
the situation at low temperatures and collision energies
is complex and at present cannot be investigated with
first-principle calculations, the high temperature, high
collision energy limit allows a quantitative interpretation
in terms of fundamental QCD predictions.
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FIG. 5. Phenomenological phase diagram of strongly inter-
acting matter constructed from chemical freeze-out points
resulting from statistical hadronization analysis of hadron
yields for central collisions at di↵erent energies. The freeze-
out points extracted from experimental data sets in our own
analysis (squares) and other similar analyses [74, 79, 91, 92]
are compared to predictions from LQCD [30, 93] shown as a
band. The inverted triangle marks the value for ground state
nuclear matter (atomic nuclei).
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I will not talk about Strangeness

Strangeness production
must be enhanced in QGP.
[J. Rafelski, B. Müller, PRL 48 (1982) 1066]

Thresholds

QGP: gg → ss̄, qq̄ → ss̄
Eth = 300 MeV

HG: π + N → K + Λ
Eth = 531 MeV

It is also suppressed in small systems.

Roberto Preghenella
ALI-PREL-134502

 36

Strangeness enhancement

ALICE, Nature Phys. 13 (2017) 535

|< 0.5η|
〉η/d

ch
Nd〈

10

IN
EL

>0

pp )π
) /

 (h
/

π
(h

/

0.5

1

1.5

2
 p
Λ 
Ξ 
Ω 

ALICE
 = 7 TeVspp, 

 = 5.02 TeVNNsp-Pb, 

strangeness hierarchy 
not strange? not enhanced!
the observed effect is strangeness  

rather than mass related

p
Λ

Ξ

Ω

[ALICE collab. Nature Physics 13 (2017) 535]
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I will not talk about Deuterons and clusters

abundances of clusters are well described by a statistical model at
T = 156.5 MeV

binding energy of a deuteron is 2.2 MeV

the more appropriate mechanism for cluster production is coalescence
(and it also works)

Questions:

Can we distinguish which mechanism is at work here?

What does it tell us when the statistical model also works?
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Fluctuations of conserved charges . . . (WHAT!?)

〈N〉 =
∑

i

NiPi =

∑
i Niwi∑
i wi

=

∑
i Ni exp

(
−Ei−µNi

T

)

∑
i exp

(
−Ei−µNi

T

) =

∂Z
∂ µ

T

Z
=
∂ lnZ

∂ µT

Relativistic system:

creation and annihilation of particle-antiparticle pairs

study charges which are conserved in microscopic interactions

fluctuations by exchange with the heatbath

mean baryon number

〈B〉 =
∂ lnZ

∂ µBT
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Statistical physics: Fluctuations of a conserved charge

Higher moments of the (net) baryon number distribution obtained via
derivatives of lnZ :

∂2 lnZ

∂
( µ
T

)2
= 〈N2〉 − 〈N〉2 = µ2 = κ2 = σ2 = VT 3χ2

∂3 lnZ

∂
( µ
T

)3
= 〈N3〉 − 3〈N2〉〈N〉+ 2〈N〉3 = µ3 = κ3 = VT 3χ3

∂4 lnZ

∂
( µ
T

)4
= 〈N4〉 − 4〈N3〉〈N〉 − 3〈N2〉2 + 12〈N2〉〈N〉2 − 6〈N〉4

= µ4 − 3µ2
2 = κ4 = VT 3χ4

Here:

µi : central moments

κi : central cumulants

χi : susceptibilities
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Other coefficients that characterise statistical distribution

Skewness:

S =
κ3

κ
3/2
2

=
µ3

σ3

Kurtosis:

κ =
κ4

κ2
2

=
µ4

µ2
2

− 3
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Why is this interesting?

Because we look for the state of matter where lnZ changes dramatically
(phase transition, crossover).
This should be visible via its derivatives.

Example: rB,042 = χB
4 /χ

B
2 = κσ2 at µB = 0
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FIG. 1. The leading order expansion coe�cients of the cumulant ratios RB
12 (left) and RB

42 (right) versus temperature calculated
on lattices with temporal extent N⌧ , and spatial sizes N� = 4N⌧ . The inset in the right hand figure shows the di↵erence between
the leading order results for the kurtosis ratio RB

42 and the skewness ratio RB
31 normalized to the latter. All expansion coe�cients

have been calculated for strangeness neutral systems, Eq. 7, with an electric charge to baryon number ratio r = 0.4 (Eq. 8).

The grey bands give the continuum extrapolated result for rB,1
12 and, in the case of rB,0

42 , an estimate for the continuum result.
In the right hand figure we also show results from a fit to the preliminary STAR data for the corresponding net proton-number
fluctuations discussed in Section VI. See text for a discussion of the two HRG curves shown in the left hand figure.

neutral case with nQ/nB = 0.4. The maximal di↵er-
ence is reached at T ' 200 MeV where it amounts to
about 12% of rB,0

31 . However, in the crossover region,
145 MeV < T < 165 MeV, which also is the temperature
range of interest for comparison with experimental data,

this di↵erence never exceeds more than 4% of rB,0
31 . The

experimental observation that SP�
3
P /MP and P�

2
P tend

to agree at large
p

s
NN

, although they di↵er from unity,
thus is in accordance with the QCD result,

SB�3
B/MB ' B�2

B for RB
12 ! 0 . (25)

V. NEXT-TO-LEADING ORDER EXPANSIONS
OF CUMULANT RATIOS

The NLO corrections in the series expansion of ratios
RB

nm at fixed temperature as well as on lines in the T -µB

plane have been introduced in Eqs. 9-11 and in Eqs. 14-
16, respectively. We will derive the NLO expansion coef-
ficients in the following and show results for strangeness
neutral systems with an electric charge to baryon num-
ber ratio nQ/nB = 0.4. However, for the discussion pre-
sented in this section we will also use the simpler expres-
sions obtained for the case of vanishing strangeness and
electric charge chemical potentials. In this case the in-
formation contained in the NLO expansion coe�cients is
much more transparent and, as we will see, they show
the same qualitative features and furthermore yield sim-
ilar quantitative results.

The NLO expansions for cumulants and the resulting
expansions of cumulant ratios for arbitrary values of the
chemical potentials ~µ = (µB , µQ, µS) are given in the Ap-
pendix. From these one easily obtains the NLO expan-

sion coe�cients rB,3
12 , rB,2

31 and rB,2
42 for µQ = µS = 0 by

evaluating these expressions for si = qi = 0 for i = 1, 3.
This yields for the ratio of NLO and LO expansion coef-
ficients,
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, (26)
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= 3
rB,2
31

rB,0
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. (28)

As the quadratic and quartic cumulants of net baryon-
number fluctuations are positive for all values of the tem-
perature [25], the NLO expansion coe�cient of RB

12 =
MB/�2

B is negative for all T . The NLO expansion co-
e�cient of RB

31 = SB�3
B/MB is negative as long as

�B
6 /�B

4 < �B
4 /�B

2 . As known from the Taylor expan-
sion of the equation of state (Fig. 13 of Ref. [25]) this is
the case at least for T>⇠155 MeV. Furthermore, Eq. 28
explicitly states that the NLO correction to the kurtosis
ratio RB

42 is three times larger than that for the skewness
ratio RB

31 for all T as long as µQ = µS = 0.

Using Eqs. 26 and 27 it also is straightforward to obtain
the NLO expansion coe�cient of RB

32 ⌘ SB�B ,

rB,3
32

rB,1
32

=
rB,2
31

rB,0
31

+
rB,3
12

rB,1
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=
1

6

�B
6
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4

� 1

2

�B
4

�B
2

, (29)

which also is negative at least for T>⇠155 MeV (see Fig. 13
of Ref. [25]).

[A. Bazavov et al., Phys. Rev. D 96 (2017) 074510]
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Why is this interesting?

Because we look for the state of matter where lnZ changes dramatically
(phase transition, crossover).
This should be visible via its derivatives.

Example: rB,042 = χB
4 /χ

B
2 = κσ2 at µB = 0
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FIG. 1. The leading order expansion coe�cients of the cumulant ratios RB
12 (left) and RB

42 (right) versus temperature calculated
on lattices with temporal extent N⌧ , and spatial sizes N� = 4N⌧ . The inset in the right hand figure shows the di↵erence between
the leading order results for the kurtosis ratio RB

42 and the skewness ratio RB
31 normalized to the latter. All expansion coe�cients

have been calculated for strangeness neutral systems, Eq. 7, with an electric charge to baryon number ratio r = 0.4 (Eq. 8).

The grey bands give the continuum extrapolated result for rB,1
12 and, in the case of rB,0

42 , an estimate for the continuum result.
In the right hand figure we also show results from a fit to the preliminary STAR data for the corresponding net proton-number
fluctuations discussed in Section VI. See text for a discussion of the two HRG curves shown in the left hand figure.

neutral case with nQ/nB = 0.4. The maximal di↵er-
ence is reached at T ' 200 MeV where it amounts to
about 12% of rB,0

31 . However, in the crossover region,
145 MeV < T < 165 MeV, which also is the temperature
range of interest for comparison with experimental data,

this di↵erence never exceeds more than 4% of rB,0
31 . The

experimental observation that SP�
3
P /MP and P�

2
P tend

to agree at large
p

s
NN

, although they di↵er from unity,
thus is in accordance with the QCD result,

SB�3
B/MB ' B�2

B for RB
12 ! 0 . (25)

V. NEXT-TO-LEADING ORDER EXPANSIONS
OF CUMULANT RATIOS

The NLO corrections in the series expansion of ratios
RB

nm at fixed temperature as well as on lines in the T -µB

plane have been introduced in Eqs. 9-11 and in Eqs. 14-
16, respectively. We will derive the NLO expansion coef-
ficients in the following and show results for strangeness
neutral systems with an electric charge to baryon num-
ber ratio nQ/nB = 0.4. However, for the discussion pre-
sented in this section we will also use the simpler expres-
sions obtained for the case of vanishing strangeness and
electric charge chemical potentials. In this case the in-
formation contained in the NLO expansion coe�cients is
much more transparent and, as we will see, they show
the same qualitative features and furthermore yield sim-
ilar quantitative results.

The NLO expansions for cumulants and the resulting
expansions of cumulant ratios for arbitrary values of the
chemical potentials ~µ = (µB , µQ, µS) are given in the Ap-
pendix. From these one easily obtains the NLO expan-

sion coe�cients rB,3
12 , rB,2

31 and rB,2
42 for µQ = µS = 0 by

evaluating these expressions for si = qi = 0 for i = 1, 3.
This yields for the ratio of NLO and LO expansion coef-
ficients,
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= 3
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. (28)

As the quadratic and quartic cumulants of net baryon-
number fluctuations are positive for all values of the tem-
perature [25], the NLO expansion coe�cient of RB

12 =
MB/�2

B is negative for all T . The NLO expansion co-
e�cient of RB

31 = SB�3
B/MB is negative as long as

�B
6 /�B

4 < �B
4 /�B

2 . As known from the Taylor expan-
sion of the equation of state (Fig. 13 of Ref. [25]) this is
the case at least for T>⇠155 MeV. Furthermore, Eq. 28
explicitly states that the NLO correction to the kurtosis
ratio RB

42 is three times larger than that for the skewness
ratio RB

31 for all T as long as µQ = µS = 0.

Using Eqs. 26 and 27 it also is straightforward to obtain
the NLO expansion coe�cient of RB

32 ⌘ SB�B ,
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+
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which also is negative at least for T>⇠155 MeV (see Fig. 13
of Ref. [25]).

[A. Bazavov et al., Phys. Rev. D 96 (2017) 074510]
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Why is this interesting?

Because we look for the state of matter where lnZ changes dramatically
(phase transition, crossover).
This should be visible via its derivatives.

Example: rB,042 = χB
4 /χ

B
2 = κσ2 at µB = 0
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FIG. 1. The leading order expansion coe�cients of the cumulant ratios RB
12 (left) and RB

42 (right) versus temperature calculated
on lattices with temporal extent N⌧ , and spatial sizes N� = 4N⌧ . The inset in the right hand figure shows the di↵erence between
the leading order results for the kurtosis ratio RB

42 and the skewness ratio RB
31 normalized to the latter. All expansion coe�cients

have been calculated for strangeness neutral systems, Eq. 7, with an electric charge to baryon number ratio r = 0.4 (Eq. 8).

The grey bands give the continuum extrapolated result for rB,1
12 and, in the case of rB,0

42 , an estimate for the continuum result.
In the right hand figure we also show results from a fit to the preliminary STAR data for the corresponding net proton-number
fluctuations discussed in Section VI. See text for a discussion of the two HRG curves shown in the left hand figure.

neutral case with nQ/nB = 0.4. The maximal di↵er-
ence is reached at T ' 200 MeV where it amounts to
about 12% of rB,0

31 . However, in the crossover region,
145 MeV < T < 165 MeV, which also is the temperature
range of interest for comparison with experimental data,

this di↵erence never exceeds more than 4% of rB,0
31 . The

experimental observation that SP�
3
P /MP and P�

2
P tend

to agree at large
p

s
NN

, although they di↵er from unity,
thus is in accordance with the QCD result,

SB�3
B/MB ' B�2

B for RB
12 ! 0 . (25)

V. NEXT-TO-LEADING ORDER EXPANSIONS
OF CUMULANT RATIOS

The NLO corrections in the series expansion of ratios
RB

nm at fixed temperature as well as on lines in the T -µB

plane have been introduced in Eqs. 9-11 and in Eqs. 14-
16, respectively. We will derive the NLO expansion coef-
ficients in the following and show results for strangeness
neutral systems with an electric charge to baryon num-
ber ratio nQ/nB = 0.4. However, for the discussion pre-
sented in this section we will also use the simpler expres-
sions obtained for the case of vanishing strangeness and
electric charge chemical potentials. In this case the in-
formation contained in the NLO expansion coe�cients is
much more transparent and, as we will see, they show
the same qualitative features and furthermore yield sim-
ilar quantitative results.

The NLO expansions for cumulants and the resulting
expansions of cumulant ratios for arbitrary values of the
chemical potentials ~µ = (µB , µQ, µS) are given in the Ap-
pendix. From these one easily obtains the NLO expan-

sion coe�cients rB,3
12 , rB,2

31 and rB,2
42 for µQ = µS = 0 by

evaluating these expressions for si = qi = 0 for i = 1, 3.
This yields for the ratio of NLO and LO expansion coef-
ficients,
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As the quadratic and quartic cumulants of net baryon-
number fluctuations are positive for all values of the tem-
perature [25], the NLO expansion coe�cient of RB

12 =
MB/�2

B is negative for all T . The NLO expansion co-
e�cient of RB

31 = SB�3
B/MB is negative as long as

�B
6 /�B

4 < �B
4 /�B

2 . As known from the Taylor expan-
sion of the equation of state (Fig. 13 of Ref. [25]) this is
the case at least for T>⇠155 MeV. Furthermore, Eq. 28
explicitly states that the NLO correction to the kurtosis
ratio RB

42 is three times larger than that for the skewness
ratio RB

31 for all T as long as µQ = µS = 0.

Using Eqs. 26 and 27 it also is straightforward to obtain
the NLO expansion coe�cient of RB
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which also is negative at least for T>⇠155 MeV (see Fig. 13
of Ref. [25]).

[A. Bazavov et al., Phys. Rev. D 96 (2017) 074510]
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Why is this even more interesting?

Because it could reveal the position of the critical point!
Example: susceptibilities in the Ising model (same universality class)
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FIG. 1. Upper panel: κ2,3,4(H) at fixed t > 0. Lower panel:
the Ising model phase diagram with Line A the maximum of
κ3 (also κ4 = 0), and Line B the maximum of κ4. The curved
lines are example freeze-out lines, drawn to model how they
may pass through the scaling region in QCD.

leading, model-dependent, analytic contributions. Our
strategy is to draw a few generic freeze out lines, de-
picted in the lower panels of Fig. 2 and Fig. 1, then ask
whether there are common features of susceptibilities on
those lines. In Fig. 1, we assume that the freeze out line
is a function of t. Going from high to low t, the sim-
plest case is FO1, which crosses lines A and B once each.
The corresponding κ4-κ3 curve is shown in Fig. 3 with
the curve going anti-clockwise forming a “banana” shape
from high to low t. This figure shows the ordering

tmin,κ4 > tmax,κ3 > tmax,κ4 > 0 , (5)

necessarily arises from the derivative relation between the
κn and κn+1. All features occur at temperature higher
than the critical point temperature. As the fluctuations
become larger closer to the CEP , the closer the freeze
out line to the CEP , the larger and more elongated the
banana is.

In Fig. 1, we also consider a freeze out line FO2 that

FIG. 2. Upper left (right): density plot of κ3 (κ4) in the Ising
model. Regions of κi > 0 are in blue and κi < 0 are in red.
The dotted (black) line is the same as Line A in Fig. 1 and dot-
dashed (red) line the same as Line B. Lower panel: A sketch of
the peaks in χ3 and χ4 on a plausible phase diagram of QCD
together with a hypothetical freeze-out line. Comparison to
the location of the maxima in χ3 and χ4 in Fig. 1 suggests how
the freeze-out line may be mapped into the Ising coordinates.

crosses line B twice. The corresponding κ4-κ3 plot in Fig.
3 also has the banana shape but has two local maximum
peaks in κ4. Those features remain when one plots m2-
m1 instead of κ4-κ3 since κ2 changes slowly when κ3(4)

changes rapidly.

One can draw other possible freeze out lines, but the
feature of an anti-clock wise loop remains, provided the
line remains in the H < 0 half-plane as is physically
sensible for freeze-out in the hadronic phase. This can
be seen from the fact that at high t, the freeze out line
can start from the regime above line A, between lines A
and B, or below line B, while at low t, it goes below line
B. This implies these freeze out lines at high and low t
will look very similar to FO1 and FO2 in Fig. 3 near the
origin. This is enough to decide the loop is anti-clock
wise which is a feature in common with experiment data
[15, 16, 23].

Scenario II: CEP at T <∼ 0—As we argue above,
the banana shape in m2-m1 is due to the scaling symme-
try governed by the CEP . But could this connection be
so strong such that the banana shape is observable even
if the CEP is at T = 0 or even T < 0? One example
is high-Tc superconductors [18]. It is hypothesized that

[J.W. Chen et al.: Phys. Rev. D 95 (2017) 014038]
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Why is this totally exciting?!

Because STAR collaboration measured data which no theoretical model
can reproduce!

Grazyna Odyniec/LBNL - CPOD 2018, September 2018, Corfu, Greece 23Oct. st 24 / 9         Xiaofeng Luo # Quark Matter 2015

Energy Dependence of Moments of Net-proton Distributions 

Net-proton as proxy for net-baryon. 
!  Non-monotonic trend is observed  
for the 0-5% most central Au+Au 
collisions. 
 
!  Separation and flipping for the  
results of 0-5% and 5-10% centrality 
are observed at 14.5 and 19.6 GeV. 
( Oscillation Pattern observed 
Very Interesting !) 

!  UrQMD (no CP) results show 
suppression at low energies  
Consistent with the effects of baryon 
number conservation.

Jochen Thaeder, Mon, 14:30pm, [153] 
Xiaofeng Luo, CPOD2014. 
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S = h(N � hNi)3i/�3

 = h(N � hNi)4i/�4 � 3

Higher moments in BES-I
Excitation function for net-proton high moments (ks2) in 5% most central Au+Au

- Non-monotonic behavior
- Peripheral collisions – smooth trend
- UrQMD (no CP): shows suppression at low energies 

which is due to baryon number conservation

Will the oscillation pattern emerge at lower energies ?
FXT data

STAR, PRL 112 (2014) 032302, CPOD2014, QM2015

M.A.Stephanov, PRL 107, 052301 (2011)

Net proton number fluctuations.

[STAR, PRL 112 (2014) 032302,
CPOD2014, QM2015]

Huge increase of κσ2 = χ4/χ2 at√
sNN = 7.7 GeV.

No theoretical understanding, but look at A. Bzdak et al.
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Measure the net proton number fluctuations

baryon number susceptibilities χB
i calculated on the lattice

enhancement of susceptibilities near the critical point

susceptibilities are measurable as cumulants of baryon number
distribution

B-number not measurable, since no neutrons are measured

Conflict!

susceptibilities are calculated in grand-canonical ensemble
cumulants are measured in real collisions which conserve B, have
limited acceptance, and measure (almost) only protons
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I will not talk about high pt and jet quenching

But it is very important!
[J. Adams et al. (STAR collab.), PRL 91 (2003) 072304]

d+Au central

[A.M. Sirunyan et al. (CMS collab.), PRL 123 (2019) 022001]

4

 

QM19 | Jet Quenching Exp | B.Trzeciak, CTU Prague

Jet quenching

 Accessed experimentally using:
● Spectra, nuclear modi6cation factors

● High-p
T
 v

2 

● Correlations, momentum balance, FF, ...

● Jet substructure analysis

Next session: Yi Chen, Jet 
substructure and parton splitting

 Hard probes: high-p
T 
partons, heavy quarks

● Produced in initial hard-scatterings 

● Tomographic probes of the medium

 PRL 123 (2019) 022001

In-medium shower modi6cation and 
nature of the energy loss.

Flavour dependence ?

How the fragmentation is modi6ed ?

 Energy loss in medium
● Collisional and radiative energy loss

● Colour and mass dependence (dead-cone e.ect)

● Parton interaction with medium: dependence on the 
coupling strength, medium dynamics, … 

● Path-length dependence, resolution scale at which the jet 
probes the medium, does broader jet loose more energy ? 

In-medium energy loss 
→ medium properties

suppression at high pt due to
quenching of hard partons by
deconfined medium

originally expected less
quenching for heavy quarks
(dead-cone effect, less gluon
bremsstrahlung)

needs the size and evolution of
the flowing bulk in which
partons are quenched

(Experts in the room!
Discussion)
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I will not talk about back-reaction on the medium

But I can’t help showing our results. . . :-)

Flows induced by hard partons merge
and create azimuthally anisotropic distribution

Anisotropic flow in b = 0 collisions: (no jets, hot spots, jets)
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[M. Schulc, B. Tomášik, Phys.Rev. C 90 (2014) 064910]
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Summary

we can map the QCD phase diagram with colliding nuclei at different
energies

gross features of particle production are statistical

expansion, including its anisotropies, can be mapped via hadron
distributions

interaction of hard partons with the medium provides an important
probe

this brings us to study the properties of QCD matter
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A list of questions/topics. . .

How do we identify the critical point?

experimentally
theoretically

Find a measurable smoking gun signature of chiral symmetry
restoration.

Link the knowledge about QCD matter with that coming from
compact stars and their mergers.

Arrive at unified description of both high pt and low pt production.
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