Hydrodynamics of Heavy-Ion Collisions

Pasi Huovinen
Institute of Physics Belgrade

THOR Winter School 2020

Jan 20-24, 2020, Jahorina, Bosnia and Herzegovina

The speaker has received funding from the European Research Council (ERC) under the European Union's
Horizon 2020 research and innovation programme (grant agreement No 725741)

Heavy-ion collision

(c) Harri Niemi

Heavy-ion collision

© Carri Niemi

Heavy-ion collision

© Carri Niemi

Heavy-ion collision

© Carri Niemi

Heavy-ion collision

© C arri Niemi

Heavy-ion collision

© Carri Niemi

Heavy-ion collision

© Carri Niemi

Conservation laws

Conservation of energy and momentum:

$$
\partial_{\mu} T^{\mu \nu}(x)=0
$$

Conservation of charge:

$$
\partial_{\mu} N^{\mu}(x)=0
$$

Conservation laws

Conservation of energy and momentum:

$$
\partial_{\mu} T^{\mu \nu}(x)=0
$$

Conservation of charge:

$$
\partial_{\mu} N^{\mu}(x)=0
$$

Local conservation of particle number and energy-momentum.

$$
\Longleftrightarrow \text { Hydrodynamics! }
$$

Conservation laws

Conservation of energy and momentum:

$$
\partial_{\mu} T^{\mu \nu}(x)=0
$$

Conservation of charge:

$$
\partial_{\mu} N^{\mu}(x)=0
$$

Local conservation of particle number and energy-momentum.

\Longleftrightarrow Hydrodynamics!

This can be generalized to multicomponent systems and systems with several conserved charges:

$$
\partial_{\mu} N_{i}^{\mu}=0,
$$

$i=$ baryon number, strangeness, charge. . .

Consider only baryon number conservation, $i=B$.
$\Rightarrow 5$ equations contain 14 unknowns!
\Rightarrow The system of equations does not close.

Consider only baryon number conservation, $i=B$.
$\Rightarrow 5$ equations contain 14 unknowns!
\Rightarrow The system of equations does not close.
\Rightarrow Provide 9 additional equations or Eliminate 9 unknowns.

Consider only baryon number conservation, $i=B$.
$\Rightarrow 5$ equations contain 14 unknowns!
\Rightarrow The system of equations does not close.
\Rightarrow Provide 9 additional equations or Eliminate 9 unknowns.

What are the components of $T^{\mu \nu}$ and N^{μ} ?

- N^{μ} and $T^{\mu \nu}$ can be decomposed with respect to arbitrary, normalized, time-like 4-vector u^{μ},

$$
u_{\mu} u^{\mu}=1
$$

- Define a projection operator

$$
\Delta^{\mu \nu}=g^{\mu \nu}-u^{\mu} u^{\nu}, \quad \Delta^{\mu \nu} u_{\nu}=0
$$

which projects on the 3 -space orthogonal to u^{μ}.

- Then

$$
N^{\mu}=n u^{\mu}+\nu^{\mu}
$$

where
$n=N^{\mu} u_{\mu} \quad$ is (baryon) charge density in the frame where $u=(1,0)$, local rest frame, LRF
$\nu^{\mu}=\Delta^{\mu \nu} N_{\nu} \quad$ is charge flow in LRF,
and

$$
T^{\mu \nu}=\epsilon u^{\mu} u^{\nu}-P \Delta^{\mu \nu}+W^{\mu} u^{\nu}+W^{\nu} u^{\mu}+\pi^{\mu \nu}
$$

$\epsilon \equiv u_{\mu} T^{\mu \nu} u_{\nu}$ energy density in LRF
$P \equiv-\frac{1}{3} \Delta^{\mu \nu} T_{\mu \nu}$ isotropic pressure in LRF
$W^{\mu} \equiv \Delta^{\mu \alpha} T_{\alpha \beta} u^{\beta}$ energy flow in LRF
$\pi^{\mu \nu} \equiv\left[\frac{1}{2}\left(\Delta^{\mu}{ }_{\alpha} \Delta^{\nu}{ }_{\beta}+\Delta^{\nu}{ }_{\beta} \Delta^{\mu}{ }_{\alpha}\right)-\frac{1}{3} \Delta^{\mu \nu} \Delta_{\alpha \beta}\right] T^{\alpha \beta}$
(trace-free) stress tensor in LRF

- The 14 unknowns in 5 equations:

$$
\left.\begin{array}{cc}
N^{\mu} & 4 \\
T^{\mu \nu} & 10
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{cc}
n, \epsilon, P & 3 \\
W^{\mu} & 3 \\
\nu^{\mu} & 3 \\
\pi^{\mu \nu} & 5
\end{array}\right.
$$

- So far u^{μ} is arbitrary. It attains a physical meaning by relating it to N^{μ} or $T^{\mu \nu}$:

1. Eckart frame:

$$
u_{E}^{\mu} \equiv \frac{N^{\mu}}{\sqrt{N_{\nu} N^{\nu}}}
$$

u^{μ} is 4-velocity of charge flow, $\nu^{\mu}=0$.
The 14 unknowns are $n, \epsilon, P, W^{\mu}, \pi^{\mu \nu}, u^{\mu}$.
2. Landau frame:

$$
u_{L}^{\mu} \equiv \frac{T^{\mu \nu} u_{\nu}}{\sqrt{u_{\alpha} T^{\alpha \beta} T_{\beta \gamma} u^{\gamma}}}
$$

u^{μ} is 4-velocity of energy flow, $W^{\mu}=0$.
The 14 unknowns are $n, \epsilon, P, \nu^{\mu}, \pi^{\mu \nu}, u^{\mu}$.

- In general, the hydrodynamical equations are not closed and cannot be solved uniquely.

Ideal hydrodynamics

Suppose particles are in local thermodynamical equilibrium, i.e., single particle phase space distribution function is given by:

$$
f_{i}(x, k)=\frac{g}{(2 \pi)^{3}}\left[\exp \left(\frac{k_{\mu} u^{\mu}(x)-\mu(x)}{T(x)}\right) \pm 1\right]^{-1}
$$

where
$T(x)$ and $\mu(x)$: local temperature and chemical potential $u(x)^{\mu}$: local 4-velocity of fluid flow.

Then kinetic theory definitions give

$$
\begin{aligned}
N^{\mu}(x) & \equiv \sum_{i} q_{i} \int \frac{\mathrm{~d}^{3} \mathbf{k}}{E} k^{\mu} f_{i}(x, k)=n(T, \mu) u^{\mu} \\
T^{\mu \nu}(x) & \equiv \sum_{i} \int \frac{\mathrm{~d}^{3} \mathbf{k}}{E} k^{\mu} k^{\nu} f_{i}(x, k) \\
& =(\epsilon(T, \mu)+P(T, \mu)) u^{\mu} u^{\nu}-P(T, \mu) g^{\mu \nu}
\end{aligned}
$$

where

$$
\begin{aligned}
n(T, \mu) & =\sum_{i} q_{i} \int \mathrm{~d}^{3} \mathbf{k} f_{i}(x, E) \text { is local charge density, } \\
\epsilon(T, \mu) & =\sum_{i} \int \mathrm{~d}^{3} \mathbf{k} E f_{i}(x, E) \text { is local energy density and } \\
P(T, \mu) & =\sum_{i} \int \mathrm{~d}^{3} \mathbf{k} \frac{\mathbf{k}^{2}}{3 E} f_{i}(x, E) \text { is local pressure. }
\end{aligned}
$$

Note! $f(x, E)$ is distribution in local rest frame: $u^{\mu}=(1, \mathbf{0})$.
\rightarrow Local thermodynamical equilibrium implies there is no viscosity:

$$
\nu^{\mu}=W^{\mu}=\pi^{\mu \nu}=0
$$

Ideal fluid approximation:

$$
\begin{aligned}
N^{\mu} & =n u^{\mu} \\
T^{\mu \nu} & =(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \mu}
\end{aligned}
$$

- Now N^{μ} and $T^{\mu \nu}$ contain 6 unknowns, ϵ, P, n and u^{μ}, but there are still only 5 equations!
- In thermodynamical equilibrium ϵ, P and n are not independent! They are specified by two variables, T and μ.
- The equation of state (EoS), $P(T, \mu)$ eliminates one unknown!
- Any equation of state of the form

$$
P=P(\epsilon, n)
$$

closes the system of hydrodynamic equations and makes it uniquely solvable (given initial conditions).

Entropy in ideal fluid

is conserved!

$$
\partial_{\mu} S^{\mu}=0
$$

where $S^{\mu}=s u^{\mu}$.

Equations of motion

Conservation laws lead to the equations of motion for relativistic fluid:

where

$$
D=u^{\mu} \partial_{\mu} \quad \text { and } \quad \nabla^{\mu}=\Delta^{\mu \nu} \partial_{\nu} .
$$

P. Huovinen @ THOR Winter School 2020, Jan 20-24, 2020
(C)Dirk H. Rischke

Usefulness of hydro?

- Initial state:
- Equation of state:
- Transport coefficients:
- Freeze-out:
unknown
unknown
unknown
unknown

\Rightarrow Predictive power?
- "Hydro doesn't know where to start nor where to end" (M. Prakash)

Usefulness of hydro?

- Initial state:
- Equation of state:
- Transport coefficients: want to study
- Freeze-out:
unknown

Need More Constraints!

"Hydrodynamical method"

1. Use another model to fix unknowns (and add new assumptions. . .)

- initial: color glass condensate or pQCD+saturation
- initial and/or final: hadronic cascade
- etc.

2. Use data to fix parameters:

Principle

- use one set of data
- fix parameters to fit it
- predict another set of data

Example © RHIC

$$
\left.\frac{\mathrm{d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T}}\right|_{b=0} \quad \text { and } \quad \frac{\mathrm{d} N}{\mathrm{~d} y}(b)
$$

$$
\left\{\begin{array}{l}
\epsilon_{0, \max }=29.6 \mathbf{G e V} / \mathrm{fm}^{3} \\
\tau_{0}=0.6 \mathbf{f m} / c \\
T_{\text {fo }}=130 \mathbf{M e V}
\end{array}\right.
$$ HBT, photons \& dileptons, elliptic flow. . .

Equations of motion

Conservation laws lead to the equations of motion for relativistic fluid:

where

$$
D=u^{\mu} \partial_{\mu} \quad \text { and } \quad \nabla^{\mu}=\Delta^{\mu \nu} \partial_{\nu} .
$$

Bjorken hydrodynamics

- At very large energies, $\gamma \rightarrow \infty$ and "Landau thickness" $\rightarrow 0$
- Lack of longitudinal scale \Rightarrow scaling flow

$$
v=\frac{z}{t}
$$

- Practical coordinates to describe scaling flow expansion are

- Longitudinal proper time τ :

$$
\tau \equiv \sqrt{t^{2}-z^{2}} \Leftrightarrow t=\tau \cosh \eta
$$

- Space-time rapidity η :

$$
\eta=\frac{1}{2} \ln \frac{t+z}{t-z} \quad \Leftrightarrow \quad z=\tau \sinh \eta
$$

- Scaling flow $v=z / t \Rightarrow$ fluid flow rapidity $y=\eta$:

$$
y=\frac{1}{2} \ln \frac{1+v}{1-v}=\frac{1}{2} \ln \frac{1+z / t}{1-z / t}=\eta
$$

- Ignore transverse expansion:

Hydrodynamic equations turn out to be particularly simple:

$$
\begin{align*}
\left.\frac{\partial \epsilon}{\partial \tau}\right|_{\eta} & =-\frac{\epsilon+P}{\tau} \tag{1}\\
\left.\frac{\partial P}{\partial \eta}\right|_{\tau} & =0 \tag{2}\\
\left.\frac{\partial n}{\partial \tau}\right|_{\eta} & =-\frac{n}{\tau} \tag{3}
\end{align*}
$$

- Eq. (2) \Rightarrow
- No force between fluid elements with different η !
- $P=P(\tau)$, no η-dependence!
- Eq. (2) + thermodynamics:

$$
0=\left.\frac{\partial P}{\partial \eta}\right|_{\tau}=\left.s \frac{\partial T}{\partial \eta}\right|_{\tau}+\left.n \frac{\partial \mu}{\partial \eta}\right|_{\tau}
$$

If $n=0, T=T(\tau) \Rightarrow T=$ const. on $\tau=$ const. surface.

- In general T and ϵ not constant on $\tau=$ const. surface, but usually they are assumed to be
\Rightarrow boost invariance: the system looks the same in all reference frames!

$$
\epsilon=\epsilon(\tau), \quad n=n(\tau)
$$

- Note that still

$$
\frac{\partial}{\partial \eta} T^{\mu \nu} \neq 0 \neq \frac{\partial}{\partial \eta} u^{\mu}
$$

Vector and tensor quantities at finite η Lorentz boosted from values at $\eta=0$

Transverse expansion and flow

- Transverse expansion will set in latest at $\tau=R / c_{s} \approx 10 \mathbf{f m}$
- Lifetimes in one dimensional expansion $\sim 30 \mathrm{fm}$
- One dimensional expansion an oversimplification
- 2+1D: longitudinal Bjorken, transverse expansion solved numerically
-3+1D: expansion in all directions solved numerically

Initial conditions

- Initial time from early thermalization argument (+finetuning. . .)
- Total entropy to fit the multiplicity
- Density distribution?
- Multiplicity is proportional to the number of participants
- Glauber model: number of participants/binary collisions

$$
N_{\text {part }}(b)=\int \mathrm{d} x \mathrm{~d} y T_{A}(x+b / 2, y)[\ldots
$$

where

$$
T_{A}(x, y)=\int_{-\infty}^{\infty} \mathrm{d} z \rho(x, y, z) \quad \text { and } \quad \rho(x, y, z)=\frac{\rho_{0}}{1+e^{\frac{r-R_{0}}{a}}}
$$

are nuclear thickness function and nuclear density distribution

- "Differential Optical Glauber:"

Number of participants per unit area in transverse plane:

$$
\begin{aligned}
n_{\mathrm{WN}}(x, y ; b) & =T_{A}(x+b / 2, y)\left[1-\left(1-\frac{\sigma}{B} T_{B}(x-b / 2, y)\right)^{B}\right] \\
& +T_{B}(x-b / 2, y)\left[1-\left(1-\frac{\sigma}{A} T_{A}(x-b / 2, y)\right)^{A}\right]
\end{aligned}
$$

Number of binary collisions per unit area

$$
n_{\mathrm{BC}}(x, y ; b)=\sigma_{p p} T_{A}(x+b / 2, y) T_{B}(x-b / 2, y)
$$

- MC-Glauber:
- sample $\rho(x, y, z)$ to get the positions of nucleons in 2 nuclei
- count \# of nucleons closer than $\sqrt{\sigma_{\mathrm{pp}} / \pi}$ in the collision
- this gives n_{WN} and n_{BC}
- repeat to get enough statistics

Equation of state

- Final state includes π 's, K 's, nucleons. . .
\Rightarrow EoS of interacting hadron gas
\Rightarrow well approximated by non-interacting gas of hadrons and resonances

$$
P(T)=\sum_{i} \int \mathrm{~d}^{3} p \frac{p^{2}}{3 E} f(p, T)
$$

- Plasma EoS (=massless parton gas) with proper statistics and $\mu_{B} \neq 0$:

$$
P(T, \mu)=\frac{\left(32+21 N_{f}\right) \pi^{2}}{180} T^{4}+\frac{1}{9} \mu_{B}^{2} T^{2}+\frac{1}{192 \pi^{2}} \mu_{B}^{4}-B
$$

\Rightarrow First order phase transition by Maxwell construction

- OR parametrized lattice result (only at $\mu_{B}=0$): \Rightarrow match your favourite smoothly to HRG

When to end?

- Particles are observed, not fluid
- How and when to convert fluid to particles?
- i.e. how far is hydro valid?

- Kinetic equilibrium requires scattering rate \gg expansion rate
- Scattering rate $\tau_{\mathrm{sc}}^{-1} \sim \sigma n \propto \sigma T^{3}$
- Expansion rate $\theta=\partial_{\mu} u^{\mu}$
- Fluid description breaks down when $\tau_{\mathrm{sc}}^{-1} \approx \theta$
\rightarrow momentum distributions freeze-out
- $\tau_{\mathrm{sc}}^{-1} \propto T^{3} \rightarrow$ rapid transition to free streaming
- Approximation: decoupling takes place on constant temperature hypersurface Σ_{fo}, at $T=T_{\mathrm{fo}}$

Hybrid models

- End hydro when rescatterings still frequent
- Convert fluid to particle ensembles
- Describe evolution of particles using hadronic transport
- Advantages:
- chemical evolution and dissipation described
- physical decoupling
- Disadvantages:
- all the unknowns of hadronic cascade. . .
- where and how to switch?
- Note: The switch from fluid to cascade is NOT freeze-out \Rightarrow particlization

Cooper-Frye

- Number of particles emitted $=$ Number of particles crossing Σ_{fo}

$$
\Rightarrow \quad N=\int_{\Sigma_{\mathrm{fo}}} \mathrm{~d} \Sigma_{\mu} N^{\mu}
$$

- Frozen-out particles do not interact anymore: kinetic theory

$$
\begin{aligned}
\Rightarrow \quad N^{\mu} & =\int \frac{\mathrm{d}^{3} \mathbf{p}}{E} p^{\mu} f(x, p \cdot u) \\
\Rightarrow \quad N & =\int \frac{\mathrm{d}^{3} \mathbf{p}}{E} \int_{\Sigma_{\mathrm{fo}}} \mathrm{~d} \Sigma_{\mu} p^{\mu} f(x, p \cdot u)
\end{aligned}
$$

- Invariant single inclusive momentum spectrum: (Cooper-Frye formula)

$$
E \frac{\mathrm{~d} N}{\mathrm{~d} \mathbf{p}^{3}}=\int_{\Sigma_{\mathrm{fo}}} \mathrm{~d} \Sigma_{\mu} p^{\mu} f(x, p \cdot u)
$$

Cooper and Frye, PRD 10, 186 (1974)

Blast wave

(Siemens and Rasmussen, PRL 42, 880 (1979))

- Freeze-out surface a thin cylindrical shell radius r, thickness $\mathrm{d} r$, expansion velocity v_{r}, decoupling time $\tau_{\text {fo }}$, boost invariant
- Cooper-Frye for Boltzmannions

$$
\frac{\mathrm{d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T}}=\frac{g}{\pi} \tau_{\text {fo }} r m_{T} \mathrm{I}_{0}\left(\frac{v_{r} \gamma_{r} p_{T}}{T}\right) \mathrm{K}_{1}\left(\frac{\gamma_{r} m_{T}}{T}\right)
$$

effect of temperature and flow velocity

- The larger the temperature, the flatter the spectra
- The larger the velocity, the flatter the spectra \Rightarrow blueshift
- The heavier the particle, the more sensitive it is to flow (shape and slope)
- Define speed of sound c_{s} :

$$
c_{s}^{2}=\left.\frac{\partial P}{\partial \epsilon}\right|_{s / n_{b}}
$$

- large $c_{s} \Rightarrow$ "stiff EoS"
- small $c_{s} \Rightarrow$ "soft EoS"
- For baryon-free matter in rest frame

$$
(\epsilon+P) D u^{\mu}=\nabla^{\mu} P \quad \Longleftrightarrow \quad \frac{\partial}{\partial \tau} u_{\mu}=-\frac{c_{s}^{2}}{s} \partial_{\mu} s
$$

\Rightarrow The stiffer the EoS, the larger the acceleration

Elliptic flow v_{2}

spatial anisotropy $\quad \rightarrow \quad$ final azimuthal momentum anisotropy

- Anisotropy in coordinate space + rescattering
\Rightarrow Anisotropy in momentum space

$$
\frac{\partial}{\partial \tau} u_{x}=-\frac{c_{s}^{2}}{s} \frac{\partial}{\partial x} s \quad \text { and } \quad \frac{\partial}{\partial \tau} u_{y}=-\frac{c_{s}^{2}}{s} \frac{\partial}{\partial y} s
$$

Initial state fluctuates

temperature profiles in transverse plane

$x[\mathrm{fm}]$

$x[\mathrm{fm}]$

$x[\mathrm{fm}]$

$x[\mathrm{fm}]$

(C)Harri Niemi

event-by-event

Miller et al., Ann.Rev.Nucl.Part.Sci. 57, 205 (2007)

- shape fluctuates event-by-event
- all coefficients v_{n} finite

$$
\frac{\mathrm{d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(2\left(\phi-\Psi_{n}\right)\right)\right]
$$

All the planes. . .

- $X_{R P}$: Reaction plane, spanned by beam and impact parameter
- $X_{P P}$: Participant plane, maximises spatial anisotropy ϵ_{n}
- Ψ_{n} : Event plane, maximises anisotropy v_{n}

From fluid to distribution

$$
\epsilon_{n}, \Phi_{n} \Longrightarrow v_{n}, \Psi_{n} \quad \frac{\mathrm{~d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right]
$$

From fluid to distribution

$$
\epsilon_{n}, \Phi_{n} \Longrightarrow v_{n}, \Psi_{n}
$$

$$
\frac{\mathrm{d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right]
$$

From fluid to distribution

$$
\epsilon_{n}, \Phi_{n} \Longrightarrow v_{n}, \Psi_{n} \quad \frac{\mathrm{~d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right]
$$

From fluid to distribution

$$
\epsilon_{n}, \Phi_{n} \Longrightarrow v_{n}, \Psi_{n} \quad \frac{\mathrm{~d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right]
$$

From fluid to distribution

$$
\epsilon_{n}, \Phi_{n} \Longrightarrow v_{n}, \Psi_{n} \quad \frac{\mathrm{~d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right]
$$

From fluid to distribution

$$
\epsilon_{n}, \Phi_{n} \Longrightarrow v_{n}, \Psi_{n} \quad \frac{\mathrm{~d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right]
$$

From fluid to distribution

$$
\epsilon_{n}, \Phi_{n} \Longrightarrow v_{n}, \Psi_{n} \quad \frac{\mathrm{~d} N}{\mathrm{~d} y \mathrm{~d} \phi}=\frac{\mathrm{d} N}{\mathrm{~d} y}\left[1+\sum_{n} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right]
$$

Success of ideal hydrodynamics

- p_{T}-averaged v_{2} of charged hadrons:

- works beautifully in central and semi-central collisions

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias $\mathrm{Au}+\mathrm{Au}$ at RHIC

not perfect agreement but plasma EoS favored

Dissipative hydrodynamics

In general

$$
\begin{aligned}
N^{\mu} & =n u^{\mu}+\nu^{\mu} \\
T^{\mu \nu} & =\epsilon u^{\mu} u^{\nu}-(P+\Pi) \Delta^{\mu \nu}+W^{\mu} u^{\nu}+W^{\nu} u^{\mu}+\pi^{\mu \nu}
\end{aligned}
$$

In Landau frame,

$$
\begin{equation*}
W^{\mu} \equiv 0, \quad \nu^{\mu}=-\frac{q^{\mu}}{h}=-\frac{n}{\epsilon+P} q^{\mu} \tag{4}
\end{equation*}
$$

and thus

$$
\begin{aligned}
N^{\mu} & =n u^{\mu}+\nu^{\mu} \\
T^{\mu \nu} & =\epsilon u^{\mu} u^{\nu}-\left(P_{\mathrm{eq}}+\Pi\right) \Delta^{\mu \nu}+\pi^{\mu \nu}
\end{aligned}
$$

Dissipative hydrodynamics

In Landau frame,

$$
\begin{aligned}
N^{\mu} & =n u^{\mu}+\nu^{\mu} \\
T^{\mu \nu} & =\epsilon u^{\mu} u^{\nu}-\left(P_{\mathrm{eq}}+\Pi\right) \Delta^{\mu \nu}+\pi^{\mu \nu}
\end{aligned}
$$

Need 9 additional equations to determine

$$
\Pi, \pi^{\mu \nu}, \nu^{\mu}, P_{\mathrm{eq}}
$$

Equation of state

$$
P_{\mathrm{eq}}=P(T, \mu)
$$

Matching conditions

ideal fluid \Longleftrightarrow exact local kinetic equilibrium
dissipation \Longleftrightarrow deviations from thermal distribution
Non-equilibrium thermodynamics?

- What are entropy and pressure?
- EoS? Temperature?

Matching conditions

ideal fluid \Longleftrightarrow exact local kinetic equilibrium
dissipation \Longleftrightarrow deviations from thermal distribution
Non-equilibrium thermodynamics?

- What are entropy and pressure?
- EoS? Temperature?

Energy and particle number defined for arbitrary system:

$$
\epsilon=u_{\mu} T^{\mu \nu} u_{\nu} \quad \text { and } \quad n=N^{\mu} u_{\mu}
$$

apply equilibrium EoS:

$$
s=s_{0}(\epsilon, n) \quad \text { and } \quad P=P_{0}(\epsilon, n)
$$

i.e. we match the system to an equilibrium system of the same ϵ and n

relativistic Navier-Stokes

Entropy four-current:

$$
S^{\mu}=s u^{\mu}+\frac{\mu}{T} \frac{q^{\mu}}{h}
$$

where

$$
h=\frac{\epsilon+P}{n}
$$

Require non-decrease of entropy:

$$
0 \leq \partial_{\mu} S^{\mu}=-\Pi \nabla^{\mu} u_{\mu}-q_{\mu} \frac{T}{e+p} \nabla^{\mu} \frac{\mu}{T}+\pi_{\mu \nu} \nabla^{\langle\mu} u^{\nu\rangle}
$$

where

$$
A^{\langle\mu \nu\rangle}=\left[\frac{1}{2}\left(\Delta_{\sigma}^{\mu} \Delta_{\tau}^{\nu}+\Delta_{\tau}^{\nu} \Delta_{\sigma}^{\mu}\right)-\frac{1}{3} \Delta^{\mu \nu} \Delta_{\sigma \tau}\right] A^{\sigma \tau}
$$

and

$$
\nabla^{\mu}=\Delta^{\mu \nu} \partial_{\nu}
$$

relativistic Navier-Stokes

$$
0 \leq \partial_{\mu} S^{\mu}=\Pi X+q_{\mu} X^{\mu}+\pi_{\mu \nu} X^{\mu \nu}
$$

is always valid if we identify

$$
\Pi \propto X, \quad q^{\mu} \propto X^{\mu}, \quad \pi^{\mu \nu} \propto X^{\mu \nu}
$$

dissipative currents small corrections linear in gradients

$$
\begin{aligned}
\Pi & =-\zeta \nabla^{\mu} u_{\mu} \\
q^{\mu} & =-\kappa \frac{T}{e+p} \nabla^{\mu} \frac{\mu}{T} \\
\pi^{\mu \nu} & =2 \eta \nabla^{\langle\mu} u^{\nu\rangle}
\end{aligned}
$$

η, ζ shear and bulk viscosities, κ heat conductivity

Navier-Stokes equations of motion

$$
\begin{aligned}
D n & =-n \partial_{\mu} u^{\mu}-\partial_{\mu}\left(\kappa \frac{T n}{h^{2}} \nabla^{\mu} \frac{\mu}{T}\right) \\
D \epsilon & =-\left(\epsilon+P-\zeta \nabla^{\alpha} u_{\alpha}\right) \partial_{\mu} u^{\nu}+2 \eta \nabla^{\langle\alpha} u^{\beta\rangle} \nabla_{\langle\alpha} u_{\beta\rangle} \\
\left(\epsilon+P-\zeta \nabla^{\alpha} u_{\alpha}\right) D u^{\mu} & =\nabla^{\mu}\left(P-\zeta \nabla^{\alpha} u_{\alpha}\right)-2 \Delta_{\alpha}^{\mu} \partial_{\beta}\left(\eta \nabla^{\langle\alpha} u^{\beta\rangle}\right)
\end{aligned}
$$

where

$$
D=u^{\mu} \partial_{\mu} \quad \text { and } \quad \nabla^{\mu}=\Delta^{\mu \nu} \partial_{\nu}
$$

Navier-Stokes equations of motion

$$
\begin{aligned}
D n & =-n \partial_{\mu} u^{\mu}-\partial_{\mu}\left(\kappa \frac{T n}{h^{2}} \nabla^{\mu} \frac{\mu}{T}\right) \\
D \epsilon & =-\left(\epsilon+P-\zeta \nabla^{\alpha} u_{\alpha}\right) \partial_{\mu} u^{\nu}+2 \eta \nabla^{\langle\alpha} u^{\beta\rangle} \nabla_{\langle\alpha} u_{\beta\rangle} \\
\left(\epsilon+P-\zeta \nabla^{\alpha} u_{\alpha}\right) D u^{\mu} & =\nabla^{\mu}\left(P-\zeta \nabla^{\alpha} u_{\alpha}\right)-2 \Delta_{\alpha}^{\mu} \partial_{\beta}\left(\eta \nabla^{\langle\alpha} u^{\beta\rangle}\right)
\end{aligned}
$$

where

$$
D=u^{\mu} \partial_{\mu} \quad \text { and } \quad \nabla^{\mu}=\Delta^{\mu \nu} \partial_{\nu}
$$

but these are parabolic. . .

Parabolic partial differential equations

PDE of the form

$$
A \frac{\partial^{2}}{\partial x^{2}} u+B \frac{\partial^{2}}{\partial x \partial y} u+C \frac{\partial^{2}}{\partial y^{2}} u+D \frac{\partial}{\partial x} u+E \frac{\partial}{\partial y} u+F=0
$$

is parabolic if

$$
B^{2}-A C=0
$$

Such equations provide infinite speed for signal propagation Müller ('76), Israel \& Stewart ('79) ...

Solutions are unstable
Hiscock \& Lindblom, PRD31, 725 (1985) ...

Hyperbolic partial differential equations

PDE of the form

$$
A \frac{\partial^{2}}{\partial x^{2}} u+B \frac{\partial^{2}}{\partial x \partial y} u+C \frac{\partial^{2}}{\partial y^{2}} u+D \frac{\partial}{\partial x} u+E \frac{\partial}{\partial y} u+F=0
$$

is hyperbolic if

$$
B^{2}-A C>0
$$

For example one-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Solutions stable and with finite propagation speed.

Causal viscous hydro

To obtain causal equations we have to replace

$$
\Pi=-\zeta \nabla^{\mu} u_{\mu}
$$

by

$$
\tau_{\Pi} D \Pi+\Pi=-\zeta \nabla^{\mu} u_{\mu}+\cdots
$$

or something similar.

Causal viscous hydro

Israel \& Stewart:

Entropy four-flow including terms second order in dissipative fluxes:

$$
\begin{aligned}
S^{\mu}=s u^{\mu}+\frac{\mu}{T} \frac{q^{\mu}}{h} & -\left(\beta_{0} \Pi^{2}-\beta_{1} q_{\nu} q^{\nu}+\beta_{2} \pi_{\lambda \nu} \pi^{\lambda \nu}\right) \frac{u^{\mu}}{2 T} \\
& -\frac{\alpha_{0} q^{\mu} \Pi}{T}+\frac{\alpha_{1} q_{\nu} \pi^{\nu \mu}}{T}
\end{aligned}
$$

\Rightarrow "Second order theory"
or, rather, Transient fluid dynamics

Evolution equation for shear

Require non-decrease of entropy:

$$
0 \leq \partial_{\mu} S^{\mu}=\Pi X+q_{\mu} X^{\mu}+\pi_{\mu \nu} X^{\mu \nu}
$$

Identify $\pi^{\mu \nu}=2 \eta X^{\langle\mu \nu\rangle}$:

$$
\begin{aligned}
\pi^{\mu \nu}= & 2 \eta\left[\nabla^{\langle\mu} u^{\nu\rangle}-\beta_{2}\left\langle u^{\lambda} \partial_{\lambda} \pi^{\mu \nu}\right\rangle-\frac{1}{2} \pi^{\mu \nu} T \partial_{\lambda}\left(\frac{\tau_{\pi} u^{\lambda}}{2 \eta T}\right)\right] \\
& +2 \eta\left[\alpha_{1} \nabla^{\langle\mu} q^{\nu\rangle}+a_{1}^{\prime} q^{\langle\mu} u^{\lambda} \partial_{\lambda} u^{\nu\rangle}\right]
\end{aligned}
$$

where

$$
A^{\langle\mu \nu\rangle}=\left[\frac{1}{2}\left(\Delta_{\sigma}^{\mu} \Delta_{\tau}^{\nu}+\Delta_{\tau}^{\nu} \Delta_{\sigma}^{\mu}\right)-\frac{1}{3} \Delta^{\mu \nu} \Delta_{\sigma \tau}\right] A^{\sigma \tau}
$$

and

$$
\Delta^{\mu \nu}=g^{\mu \nu}-u^{\mu} u^{\nu} .
$$

Israel-Stewart evolution equations

$$
\begin{aligned}
D \Pi= & -\frac{1}{\tau_{\Pi}}\left(\Pi+\zeta \nabla_{\mu} u^{\mu}\right)-\frac{1}{2} \Pi\left(\nabla_{\mu} u^{\mu}+D \ln \frac{\beta_{0}}{T}\right) \\
& +\frac{\alpha_{0}}{\beta_{0}} \partial_{\mu} q^{\mu}-\frac{a_{0}^{\prime}}{\beta_{0}} q^{\mu} D u_{\mu} \\
D q^{\mu}= & -\frac{1}{\tau_{q}}\left[q^{\mu}+\kappa_{q} \frac{T^{2} n}{\varepsilon+p} \nabla^{\mu}\left(\frac{\mu}{T}\right)\right]-u^{\mu} q_{\nu} D u^{\nu} \\
& -\frac{1}{2} q^{\mu}\left(\nabla_{\lambda} u^{\lambda}+D \ln \frac{\beta_{1}}{T}\right)-\omega^{\mu \lambda} q_{\lambda} \\
& -\frac{\alpha_{0}}{\beta_{1}} \nabla^{\mu} \Pi+\frac{\alpha_{1}}{\beta_{1}}\left(\partial_{\lambda} \pi^{\lambda \mu}+u^{\mu} \pi^{\lambda \nu} \partial_{\lambda} u_{\nu}\right)+\frac{a_{0}}{\beta_{1}} \Pi D u^{\mu}-\frac{a_{1}}{\beta_{1}} \pi^{\lambda \mu} D u_{\lambda} \\
D \pi^{\mu \nu}= & -\frac{1}{\tau_{\pi}}\left(\pi^{\mu \nu}-2 \eta \nabla^{\langle\mu} u^{\nu\rangle}\right)-\left(\pi^{\lambda \mu} u^{\nu}+\pi^{\lambda \nu} u^{\mu}\right) D u_{\lambda} \\
& -\frac{1}{2} \pi^{\mu \nu}\left(\nabla_{\lambda} u^{\lambda}+D \ln \frac{\beta_{2}}{T}\right)-2 \pi_{\lambda}^{\langle\mu} \omega^{\nu\rangle \lambda} \\
& -\frac{\alpha_{1}}{\beta_{2}} \nabla^{\langle\mu} q^{\nu\rangle}+\frac{a_{1}^{\prime}}{\beta_{2}} q^{\langle\mu} D u^{\nu\rangle}
\end{aligned}
$$

Israel-Stewart evolution. . .

bulk pressure Π, shear stress $\pi^{\mu \nu}$ charge diffusion μ^{μ} treated as independent dynamical quantities that relax to their Navier-Stokes value on time scales $\tau_{\Pi}(e, n), \tau_{\pi}(e, n), \tau_{q}(e, n)$

Equations of motion evolution of bulk evolution of charge diffusion evolution of shear stress 14 equations, 14 unknowns

5 equations
1 equation
3 equations
5 equations

These equations are causal and stable
But what are the parameters $\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1}, \beta_{2}$?
Or how to obtain ζ, κ, η ?
\Longrightarrow use kinetic theory
Or some other microscopic theory

Shear viscosity

Newton:

$$
T_{x y}=-\eta \frac{\partial u_{x}}{\partial y}
$$

acts to reduce velocity gradients

in closed system: energy conserved
kinetic energy gets converted to internal energy
\Rightarrow dissipation

Shear in 1D-bjorken

Navier-Stokes stress

$$
\begin{aligned}
\pi^{\mu \nu}=2 \eta \nabla^{\langle\mu} u^{\nu\rangle} & =\operatorname{diag}\left(0, \frac{2 \eta}{3 \tau}, \frac{2 \eta}{3 \tau},-\frac{4 \eta}{3 \tau}\right) \\
T^{\mu \nu} & =\operatorname{diag}\left(\epsilon, P-\frac{\pi_{L}}{2}, P-\frac{\pi_{L}}{2}, P+\pi_{L}\right)
\end{aligned}
$$

where $\quad \pi_{L}=\pi^{\eta \eta}=-\frac{4 \eta}{3 \tau}$
Effective longitudinal pressure $P+\pi_{L}<P$
Effective transverse pressure $P-\pi_{L} / 2>P$
Shear slows down longitudinal expansion and accelerates transverse expansion

Effect on temperature

- Edges expand further and stay hotter
- At first core cools slower, later faster

Effect on v_{2}

- massless particles
- Note: both change in flow and distributions affect v_{2}

η / s from v_{2}

Shen et al. J.Phys.G38:124045,2011

-MC-Glauber initialization: $\eta / s=0.08$
-MC-KLN initialization: $\eta / s=0.2$

Sensitivity to η / s

Schenke et al. Phys.Rev.C85:024901,2012

- higher coefficients are suppressed more by dissipation

Distributions of v_{n} event-by-event

Scale out the average

$$
\begin{gathered}
\delta v_{2}=\frac{v_{2}-\left\langle v_{2}\right\rangle}{\left\langle v_{2}\right\rangle} \\
\Downarrow \\
P\left(\delta v_{2}\right)=P\left(\delta \epsilon_{2}\right)
\end{gathered}
$$

independent of viscosity
Niemi et al. Phys.Rev.C87,054901,2013

Flow fluctuations

Aad et al. [ATLAS Collaboration] JHEP 1311:183,2013

- $P\left(v_{2}\right)$ compared to MC-Glauber and MC-KLN $P\left(\varepsilon_{2}\right)$
-MC-Glauber initialization: too wide
-MC-KLN initialization: too narrow

Gale et al., PRL 110, 012302 (2013)
-IP-Glasma
(Color Glass + Yang-Mills)

Niemi et al., PRC 93, 024907 (2016)

```
\bulletEKRT
(pQCD + saturation)
```

initial states work

State of the art

- IP-Glasma initial state: Color Glass plus Yang-Mills evolution

- $\eta / s=0.2$ favoured

State of the art

- IP-Glasma initial state: Color Glass plus Yang-Mills evolution

- $\eta / s=0.2$ favoured at LHC
- $\eta / s=0.12$ favoured at RHIC

Summary

- Hydrodynamics is a useful tool to model collision dynamics
- approximation at its best
- but it can reproduce (some of) the data
- we have observed hydrodynamical behaviour at RHIC and LHC

Literature:

Textbook:

- W. Florkowski,

Phenomenology of Ultra-relativistic Heavy-ion Collisions, (World-Scientific, 2010)
Reviews:

- P. F. Kolb and U. Heinz, in Quark Qluon Plasma 3 [nucl-th/0305084]
- P. Huovinen, in Quark Qluon Plasma 3 [nucl-th/0305064]
- P. Huovinen and P. V. Ruuskanen, Ann. Rev. Nucl. Part. Sci. 56, 163 (2006)
- D. Teaney, in Quark Gluon Plasma 4, arXiv:0905.2433 [nucl-th]
- P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010)
- C. Gale, S. Jeon and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)
- U. W. Heinz and R. Snellings, arXiv:1301.2826 [nucl-th]

Hydrodynamics lecture notes:

- D. H. Rischke, nucl-th/9809044

Dissipative hydro from kinetic theory:

- S. R. de Groot, W. A. van Leeuwen, and Ch. G. van Weert, Relativistic kinetic theory - Principles and applications, (North-Holland, 1980)
- G. S. Denicol, H. Niemi, E. Molnar and D. H. Rischke, Phys. Rev. D 85, 114047 (2012)

