

Quantum sensing in ultra-clean optical lattices

Holger Müller group UC Berkeley

Quantum computing: has it been achieved?

- Extended Church-String thesis: all reasonable digital models of computation are polynomially equivalent
- Feynman '81: Can't simulate QM on a computer with exponential overhead
- Q-computers are digital (Bernstein '93), programmable (Simons '94), NOT polynomially equivalent (Shor)
- Supremacy: A practical application, not necessarily useful, violating the extended Church-Turing thesis.
 - Milestone towards useful Q computers
 - Testing QM in the limit of high complexity
 - Need to prove that the task is prohibitively hard for class.
 Computers
 - Prove the Q-computer actually carried out the task

Quantum computers don't solve useful problems yet

- Near-term quantum computers are NISQ - noisy, immediate-scale quantum),
- 10s-100s of qbits
- Q speedup from interference!
 - Random circuits hard to simulate.
 - Supercomputers assumes that quantum circuit is perfect
- Simulation: new materials, chemistry, Cm physics
- High-energy lattice QCD simulationsQuantum walks, qubitization
- Electronic structure calcs. Variational quantum solver. But QMA-hard (quantum analog to NP hard
- Simulations of high-energy physics

Quantum frontiers

- Sensing, communication, computing
- Frontiers: Short distance, long distance, complexity (more is different)
- Decoherence. No interaction with the environment except when you need it
- Error correction: encode information nonlocally in a highly entangled state, so the environment cannot interact locally with the information
- Error rate today 10⁻³, about 10⁻² per measurement (better for trapped ions)
- · Quantum chaos in quantum random walks?
- Analog many qubits that resemble a system; Digital: gate-based universal quantum computer
- Atom interferometer for prec. Measurement, navigation

Quantum sensing, simulation, and -computing

- Quantum simulations with cold atoms in opitcal lattices are currently the most powerful
- QuantISED project "Search for beyond the standard model physics by measuring the fine structure constant"
- Ultra-precise optical lattices keep the Qubit alive
- Ultracold neutral atoms trapped within optical lattice potentials make the largest current quantum simulations [2–4].
- Translational invariance
- I. Bloch et al., Nature Physics (2012); E. Zohar et al., Rep. Prog. Phys. 79, (2016); S. P. Jordan, K. S. M. Lee, and J. Preskill, Science (2012)

Interferometry...

$$\lambda = \frac{h}{mv}$$

Precision atom interferometry

Rosi et al. **Nature** 510, 518-521 (2014)

Measurement of Newton's gravitational constant *G*

Measuring the fine structure constant α at Berkeley

Kovachy et al. **Nature** 528, 530-533 (2015)

Tests of GR and QM Stanford 10m atomic fountain

Parker et al. **Science** 360, 191-195 (2018)

Long interrogation times

- Large phase accumulation → high precision
- But gravity...
 - Big experiments
 - Space

Kasevich group @ Stanford (pc: Sugarbaker PhD thesis)

Cold Atom Lab Science Poster

VLBAI IQO @ Hannover

What if we held the atoms?

Has been demonstrated

Charriere et al., **PRA** 85, 013639 (2012)

Zhang et al., **PRA** 94, 043608 (2016)

- Limited by wavefront distortions
- Requires extreme trap uniformity

+ MIGA, MAIUS, BECCAL, ...

Experimental setup

Higher Laser Intensity

Smooth Wavefronts

Well-defined beam parameters

Lattice interferometer geometry

Free evolution phase

Sweep out free evolution phase

$$\Delta\phi_{FE}=rac{mg\Delta z}{\hbar} au$$

with

Long holds

The Fine Structure Constant

Measures the strength of the electromagnetic interaction

$$\alpha = \frac{1}{4\pi\epsilon_0} \frac{e^2}{\hbar c} = \frac{1}{137.035999139(31)} \quad (0.23 \mathrm{ppb}) \quad \text{2014 CODATA}$$

The most precise theory/experiment comparison in science

Fine structure constant

Electron magnetic moment

Unknown particles may shift magnetic moment

α from \hbar/m

Photon Recoil Measurement

- $\omega r \sim 2\pi \times 2 \text{ kHz}$,
- Accuracy 10⁻¹⁰
- Need to pinpoint resonance to 0.2 µHz or 6x10⁻²²
- 10,000 times better accuracy than precision of best clocks

Atom-interferometer measurement of a

Ramsey-Bordé Interferometer

0.16 ppb systematic errors

Effect	Sect.	Value	δα/α (ppb)	
Laser Frequency	1	N/A	-0.24 ± 0.03	
Acceleration Gradient	4A	\Box = (2.13 ± 0.01)×10 ⁻⁶ /s ²	-1.69 ± 0.02	Big
Gouy phase	3	w_0 =3.21±0.008 mm, z_0 =0.5±1.0 m	-3.60± 0.03	
Wavefront Curvature	12	$(r^2)^{1/2}=0.58 \text{ mm}$	0.15 ± 0.03	
Beam Alignment	5	N/A	0.05 ± 0.03	
BO Light Shift	6	N/A	0 ± 0.004	
Density Shift	7	ρ =10 ⁶ atoms/cm ³	0 ± 0.003	
Index of Refraction	8	n_{cloud} -1=30×10 ⁻¹²	0 ± 0.03	
Speckle Phase Shift	4B	N/A	0 ± 0.04	
Sagnac Effect	9	N/A	0 ± 0.001	
Mod. Frequency Wavenumber	10	N/A	0 ± 0.001	'New'
Thermal Motion of Atoms	11	N/A	0 ± 0.08	
Non-Gaussian Waveform	13	N/A	0 ± 0.03	
Parasitic Interferometers	14	N/A	0 ± 0.03	
Total Systematic Error			-5.33 ± 0.12	
Total Statistical Error			± 0.16	·
Electron Mass (18)		5.48579909067×10 ⁻⁴ u	± 0.02	
Cesium Mass (4,17)		132.9054519615 u	± 0.03	

Results

Results

Dark photon limits

A more nearly perfect laser beam

- This project ~ 6 cm radius
- Wavelength errors ~(λ/radius)²
- 400-fold higher accuracy
- Beam splitter losses ~(λ/radius)⁴
- higher momentum transfer, and thus sensitivity

Thick beam will unleash the potential of atom interferometry

New interferometer geometries

- Eliminates gravity gradient
- Moderate cost in integration rate
- Shown to work in arXiv:1901.03487

Laser system

New physics reach

Quantum computing prospects (with Christian Bauer)

- · Perturbative expansions fail when the coupling constants become too large.
- · Main theoretical challenge in HEP today.
- Discretize the spatial directions
- · Exponentially complex on classical computers.
- · Jordan, Lee, Preskill 2012: Quantum algorithms are capable of such simulations with only polynomial growth in complexity.
- · Impossible on NISQ computers => Hardware simulation son optical lattices
 - Large set of harmonic oscillators, with well defined interactions between
 - Non-local interactions
 - · Add site-resolved detection and manipulation of atoms

Thank you!

Fine Structure Constant

Richard Parker
Brian Estey,
Chenghui Yu
Weicheng Zhong
Zachary Pagel
Shau-Yu Lan
Pei-Chen Kuasn

Cavity Interferometer

Justin Brown
Lothar Maisenbacher
Matt Jaffe
Victoria Xu
Cris Panda
Logan Clark (on loan)
Sofus Cristensen

Atom interferometry

Xuejian Wu Storm Weiner, Eric Copenhaver

Phase-Contrast TEM

Sara Campbell
Osip Schwartz
Jeremy Axelrod,
Carter Turnbaugh

Faculty Alumni

Philipp Haslinger (Vienna)
Paul Hamilton (UCLA)
Mike Hohensee (LLNL)
Geena Kim (Regis)
Pei-Chen Kuan (NCKU)
Shau-Yu Lan (NTU)