SU(2) gauge theory on digital quantum computers

Jesse Stryker Institute for Nuclear Theory

work done w/ Natalie Klco (INT) & Martin Savage (INT)

[arXiv:1908.06935](https://arxiv.org/abs/1908.06935)

Lawrence Berkeley National Lab Quantum Computing Mini-Workshop 2019/10/30

INSTITUTE for
NUCLEAR THEORY W

Conjectured phase diagram credit: G. Endrödi [J.Phys.Conf.Ser. 503 \(2014\) 012009](https://doi.org/10.1016/j.physa.2014.11.005)

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 2/59

Conjectured phase diagram credit: G. Endrödi [J.Phys.Conf.Ser. 503 \(2014\) 012009](https://doi.org/10.1016/j.physa.2014.11.005)

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 3/59

Physics targets:

Conjectured phase diagram credit: G. Endrödi [J.Phys.Conf.Ser. 503 \(2014\) 012009](https://doi.org/10.1016/j.physa.2014.11.005)

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 4/59

Physics targets:

- **Simulation of quantum chromodynamics (QCD)**
	- Hadronization
	- Microscopic understanding of nuclear interactions

Conjectured phase diagram credit: G. Endrödi [J.Phys.Conf.Ser. 503 \(2014\) 012009](https://doi.org/10.1016/j.physa.2014.11.005)

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 5/59

INSTITUTE for

Physics targets:

- **Simulation of quantum chromodynamics (QCD)**
	- Hadronization
	- Microscopic understanding of nuclear interactions
- **Complete phase diagram of QCD**

Physics targets:

- **Simulation of quantum chromodynamics (QCD)**
	- Hadronization
	- Microscopic understanding of nuclear interactions
- **Complete phase diagram of QCD**
- **Nuclear equation of state**

Physics targets:

- **Simulation of quantum chromodynamics (QCD)**
	- Hadronization
	- Microscopic understanding of nuclear interactions
- **Complete phase diagram of QCD**
- **Nuclear equation of state**

How to make these predictions?

Physics targets:

- **Simulation of quantum chromodynamics (QCD)**
	- Hadronization
	- Microscopic understanding of nuclear interactions
- **Complete phase diagram of QCD**
- **Nuclear equation of state**

How to make these predictions?

● **Non-perturbative problems**

Physics targets:

- **Simulation of quantum chromodynamics (QCD)**
	- Hadronization
	- Microscopic understanding of nuclear interactions
- **Complete phase diagram of QCD**
- **Nuclear equation of state**

Temperature 10^{12} K critical ndpoint? collision 10^{15} g/cm³ **Barvon Magnetic field** density **How to make these predictions?** ● **Non-perturbative problems** ● **Numerically simulate QCD degrees of freedom**

Conjectured phase diagram credit: G. Endrödi [J.Phys.Conf.Ser. 503 \(2014\) 012009](https://doi.org/10.1016/j.physa.2014.11.005)

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 10/59

INSTITUTE fo

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 15/59

Monte Carlo on this

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 17/59

INSTITUTE for
NUCLEAR THEORY

Wilson gauge action

Relation to continuum gauge fields:

$$
U_{n,\mu} = e^{iaA_{\mu}(x)} \qquad S_W = a^4 \sum_{n} F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} + \cdots
$$

Equation of the system

Fermionic matter:

• Grassmann integrals done analytically \rightarrow "Fermion determinant"

 $Z = \int \prod_{n,\mu} [\mathcal{D}U_{n,\mu}] e^{-S[U]}$

Euclidean path integral Monte Carlo

- **Great for static, equilibrium properties**
- Real-time dynamics? Nonzero density? Topological term?

Euclidean path integral Monte Carlo

- **Great for static, equilibrium properties**
- Real-time dynamics? Nonzero density? Topological term?

-*S*[*U*] generically complex-valued

Euclidean path integral Monte Carlo

- **Great for static, equilibrium properties**
- Real-time dynamics? Nonzero density? Topological term?

-*S*[*U*] generically complex-valued \rightarrow "Sign problems"

Euclidean path integral Monte Carlo

- **Great for static, equilibrium properties**
- **Real-time dynamics? Nonzero density? Topological term?**

-*S*[*U*] generically complex-valued \rightarrow "Sign problems"

Exponentially hard to sample oscillating path integral

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 22/59

Euclidean path integral Monte Carlo

- **Great for static, equilibrium properties**
- Real-time dynamics? Nonzero density? Topological term?

-*S*[*U*] generically complex-valued \rightarrow "Sign problems"

Exponentially hard to sample oscillating path integral

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 23/59

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 24/59

Digital quantum computers:

Digital quantum computers: Unitary gates: $e^{-it\hat{H}}$ with your favorite Hamiltonian

- Want to simulate non-perturbative gauge theory
	- ➔ Gauge theory on the lattice
	- ➔ Hamiltonian lattice gauge theory

Digital quantum computers:

Unitary gates: $e^{-it\hat{H}}$ with your favorite Hamiltonian

- Want to simulate non-perturbative gauge theory
	- ➔ Gauge theory on the lattice
	- ➔ Hamiltonian lattice gauge theory

General problem: How to map the Hilbert space $\mathcal H$ and $\hat H$ on to **the qubits & gates?**

Talk outline

- **Hamiltonian SU(2) lattice gauge theory**
- **Plaquette ladder**
- **Mapping to qubits**
- **Hardware results from IBM Tokyo**
- **Summary & future directions**

Hamiltonian lattice gauge theory

Canonical quantization, temporal gauge

 $U_{n,i} \rightarrow \hat{U}_{n,i}$ link variables: **matrices** of **operators**

Gauge transformations: $\hat{U}_{n,i} \rightarrow \Omega_n \hat{U}_{n,i} \Omega_{n+e_i}^{\dagger}$

$$
[E_{L/R}^a, E_{L/R}^b] = i f^{abc} E_{L/R}^c
$$

$$
[E_R^a, U] = + U T^a
$$

$$
[E_L^a, U] = -T^a U
$$

Left, right electric fields to generate left, right rotations.

$$
\hat{H}_E = \frac{g^2}{2} \sum_{n,i} \hat{E}^a_{n,i} \hat{E}^a_{n,i} \qquad \hat{H}_B = - \sum_n \frac{1}{2g^2} \left(\hat{\Box}_n + \hat{\Box}^\dagger_n \right)
$$
\ngauge invariant Casimir\n
$$
\hat{\Box}_n \equiv \text{tr}(\hat{U}_{n,\Box})
$$

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 29/59

Hilbert space

 E_L^3

coordinate-like basis

$$
\hat{U}_{ij} |g\rangle = D_{ij}(g) |g\rangle \quad g \in G
$$

momentum-like basis

$$
E_L^3 |j, m, m'\rangle = -m |j, m, m'\rangle
$$

$$
E_R^3 |j, m, m'\rangle = m' |j, m, m'\rangle
$$

 $E_{L}^{a}E_{L}^{a}|j,m,m'\rangle=E_{R}^{a}E_{R}^{a}|j,m,m'\rangle$ $= j(j+1) | j, m, m' \rangle$ More info: Zohar & Burrello, [PRD 91, 054506 \(2015\)](https://doi.org/10.1103/PhysRevD.91.054506)

$$
\langle g|j, m, m'\rangle = \sqrt{\frac{d_j}{|G|}} D_{m,m'}^{(j)}(g)
$$

group element
state

Plus Gauss law constraints

Hilbert space

coordinate-like basis

$$
\hat{U}_{ij} |g\rangle = D_{ij}(g) |g\rangle \quad g \in G
$$

momentum-like basis

$$
E_L^3 |j, m, m'\rangle = -m |j, m, m'\rangle
$$

$$
E_R^3 |j, m, m'\rangle = m' |j, m, m'\rangle
$$

\n
$$
E_L^a E_L^a |j, m, m'\rangle = E_R^a E_R^a |j, m, m'\rangle
$$

\n
$$
= j(j+1) |j, m, m'\rangle
$$

More info: Zohar & Burrello, [PRD 91, 054506 \(2015\)](https://doi.org/10.1103/PhysRevD.91.054506)

$$
\langle g|j, m, m'\rangle = \sqrt{\frac{d_j}{|G|}} D_{m,m'}^{(j)}(g)
$$

group element
state

Plus Gauss law constraints

• Truncation not ideal for qubit registers

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle$, $0 \le j \le J$ $d_j = (2j + 1)^2$

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle$, $0 \le j \le J$ $d_j = (2j + 1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle$, $0 \le j \le J$ $d_j = (2j + 1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

• Non-commuting constraints on superpositions

• Truncation not ideal for qubit registers

 $|j, m, m' \rangle, \quad 0 \le j \le J \qquad d_j = (2j + 1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

• Non-commuting constraints on superpositions $[\mathcal{G}^a, \mathcal{G}^b] \neq 0$ $(\mathcal{G}^a \equiv \nabla \cdot \mathbf{E}^a - \rho^a)$

• Truncation not ideal for qubit registers

 $|j, m, m' \rangle, \quad 0 \le j \le J \qquad d_j = (2j + 1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

- Non-commuting constraints on superpositions $[\mathcal{G}^a, \mathcal{G}^b] \neq 0$ $(\mathcal{G}^a \equiv \nabla \cdot \mathbf{E}^a - \rho^a)$
- Far too many d.o.f.s carried around

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle$, $0 \le j \le J$ $d_j = (2j + 1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

- Non-commuting constraints on superpositions $[\mathcal{G}^a, \mathcal{G}^b] \neq 0$ $(\mathcal{G}^a \equiv \nabla \cdot \mathbf{E}^a - \rho^a)$
- Far too many d.o.f.s carried around

actual photograph of quantum programmer reacting to $|$ imm'>

System choice

We consider a periodic **string of plaquettes** or "ladder" ✔ "1d," but has *H^B*

- \sim 3-pt vertices \leftrightarrow unique singlet at vertex for specified j's
- ✔ Arbitrary length

Gauge singlet basis

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 40/59

Gauge singlet basis

Fully gauge invariant state of lattice with definite link angular momenta:

Gauge singlet basis

Fully gauge invariant state of lattice with definite link angular momenta:

$$
\begin{array}{ll} \displaystyle |\chi\rangle=\mathcal{N}\sum_{\{m\}}\prod_{i=1}^{L}\langle j_{i}^{t},m_{i,R}^{t},j_{i+1}^{t},m_{i+1,L}^{t}|q_{i},m_{q_{i}}^{t}\rangle&\big\} \text{ CG's to form singlets at}\\ \hspace{2.5cm} \langle j_{i}^{b},m_{i,R}^{b},j_{i+1}^{b},m_{i+1,L}^{b}|q_{i},m_{q_{i}}^{b}\rangle&\big\} \text{ CG's to form singlets at}\\ \displaystyle |j_{i}^{t},m_{i,L}^{t},m_{i,R}^{t}\rangle\otimes |j_{i}^{b},m_{i,L}^{b},m_{i,R}^{b}\rangle\otimes |q_{i},m_{q_{i}}^{t},m_{q_{i}}^{b}\rangle&\big\} \text{ Kets going around each} \end{array}
$$

"staple"

INSTITUTE for
NUCLEAR THEOR

• Just using angular momentum addition (Clebsch-Gordan coefficients) to form singlets

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 42/59

Matrix elements of *H*

 \bullet Non-diagonal elements derive from link operators in H_B : \star

each link op going round a plaquette "adds" ½-unit of angular momentum:

 \cdot This is all the info needed to compute matrix $||H||$ w.r.t. **singlet states**

Plaquette operator & gauge-variant completion

- With reduced/singlet basis, matrix elements of $\hat{\Box}$ depend on plaquette's *j* 's, as well as adjacent *j* 's
- Still have disallowed states
	- Action of plaquette op on disallowed space is arbitrary

 \rightarrow "Gauge-variant completion" (GVC): Only bother reproducing correct matrix elements between allowed states

Specific truncation, size

For our simulation:

- Cutoff $\Lambda_j = \frac{1}{2}$
- Length $L=2$
- + Simplifications \rightarrow Four 'active' links

Four qubits represent state

$$
|j=0\rangle \rightarrow |0\rangle \,, \quad |j=1/2\rangle \rightarrow |1\rangle
$$

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 45/59

Specific truncation, size

For our simulation:

- Cutoff $\Lambda_j = \frac{1}{2}$
- \cdot Length $L=2$
- + Simplifications \rightarrow Four 'active' links

Four qubits represent state

GVC of plaquette operator

$$
\hat{\Box}^{(1/2)} = \Pi_0 XXX + \frac{1}{4} \Pi_1 XXX
$$

 $|j_l q_l j_a q_r\rangle$

$$
j = 0 \rangle \rightarrow |0\rangle, \quad |j = 1/2\rangle \rightarrow |1\rangle
$$

INSTITUTE for
NUCLEAR THEO

Trotter-Suzuki time evolution

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 47/59

Trotter-Suzuki time evolution

Time evolution operator replaced by Trotter-Suzuki approximation

 $e^{-i\Delta t(H_E+H_B)} \sim e^{-i\Delta t H_E}e^{-i\Delta t \Box_1/(2g^2)}e^{-i\Delta t \Box_2/(2g^2)}$

Try: *t* spread over one Trotter step, two Trotter steps, … starting from strong-coupling vacuum (all $=0$)

Trotter-Suzuki time evolution

Time evolution operator replaced by Trotter-Suzuki approximation

$$
e^{-i\,\,\Delta t (H_E + H_B)} \simeq e^{-i\,\,\Delta t H_E} e^{-i\,\,\Delta t \Box_1/(2g^2)} e^{-i\,\,\Delta t \Box_2/(2g^2)}
$$

Try: *t* spread over one Trotter step, two Trotter steps, … starting from strong-coupling vacuum (all $=0$)

- Circuit doesn't introduce further systematics
- Trotterization respects gauge constraints

INSTITUTE for UCLEAR THEO

From IBM: Probabilities measured in computational basis

1) Constrained inversion → pre-measurement probabilities

• Needed because of measurement errors

2) Run simulation with superfluous CNOT pairs inserted

• $(CNOT)^2 = 1$, but introduces extra noise

3) Extrapolate pre-measurement probabilities to zero CNOT noise

Probability extrapolation

- Errors into disallowed space mitigated for $N_{\text{Tot}} = 1$
- Coherence is lost for $N_{\text{Tot}} > 1$

INSTITUTE fo

Test observable: Plaquette electric energy

- Measure: Electric energy encircling one plaquette
	- Using extrapolated probability densities
- Compare to ideal Trotterized simulation outcome
- $N_{\text{test}} = 1$ gets it right within uncertainties!

Summary of hardware results

- First simulation of a truncated SU(2) system done on existing IBM hardware
- Used gauge theory constraints + NISQ-era tricks to mitigate subset of errors
- Low enough circuit depth \rightarrow Can extract an observable

Generalizations, future directions

- **Higher cutoff**
	- **All links now active**
	- **More interesting GVC**
- **Higher dimensions**
	- **3-point vertices important**
	- **More qubits, more gates, more noise**
		- **→ Maybe not today, but soon?**
- **SU(3)**
	- **Schwinger bosons (I. Raychowdhury et al.) may be helpful for computing reduced matrix elements**

Thank you for your attention!

Questions?

JRS was supported by DOE Grant No. DE-FG02-00ER41132, and by the National Science Foundation Graduate Research Fellowship under Grant No.1256082. Helpful conversations with: D. Kaplan, I. Raychowdhury, E. Zohar

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 55/59

Plaquette operator matrix elements

$$
\langle \chi_{\ldots,j_{\ell}^{t,b},q_{\ell f},j_{af}^{t,b},q_{rf},j_{r}^{t,b},\ldots} | \hat{\Box} | \chi_{\ldots,j_{\ell}^{t,b},q_{\ell i},j_{ai}^{t,b},q_{ri},j_{r}^{t,b},\ldots} \rangle =
$$
\n
$$
\sqrt{\dim(j_{ai}^{t}) \dim(j_{af}^{t}) \dim(j_{ai}^{b}) \dim(j_{af}^{b})}
$$
\n
$$
\times \sqrt{\dim(q_{\ell i}) \dim(q_{\ell f}) \dim(q_{r i}) \dim(q_{r f})}
$$
\n
$$
\times (-1)^{j_{\ell}^{t}+j_{\ell}^{b}+j_{r}^{t}+j_{r}^{b}+2(j_{af}^{t}+j_{af}^{b}-q_{\ell i}-q_{ri})}
$$
\n
$$
\times 0.9 \begin{Bmatrix} j_{\ell}^{t} & j_{ai}^{t} & q_{\ell i} \\ \frac{1}{2} & q_{\ell f} & j_{af}^{t} \end{Bmatrix} \begin{Bmatrix} j_{\ell}^{b} & j_{ai}^{b} & q_{\ell i} \\ \frac{1}{2} & q_{\ell f} & j_{af}^{b} \end{Bmatrix} \begin{Bmatrix} j_{r}^{t} & j_{ai}^{t} & q_{ri} \\ \frac{1}{2} & q_{rf} & j_{af}^{t} \end{Bmatrix} \begin{Bmatrix} j_{r}^{b} & j_{ai}^{b} & q_{ri} \\ \frac{1}{2} & q_{rf} & j_{af}^{b} \end{Bmatrix}
$$

Plaquette operator matrix elements

TABLE I. Non-zero matrix elements of the $\Lambda_j = 1/2$ plaquette operator $\hat{\Box}^{(1/2)}$ as calculated in Eq. (6) with $j_{\ell,a,r}^t = j_{\ell,a,r}^b$. All other matrix elements between physical states are zero.

For length $L > 2$:

$$
\hat{\Box}^{(1/2)} = \Pi_0 XXX \Pi_0 + \frac{1}{2} \Pi_0 XXX \Pi_1 \n+ \frac{1}{2} \Pi_1 XXX \Pi_0 + \frac{1}{4} \Pi_1 XXX \Pi_1
$$

IBM Tokyo Q20 specs

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 58/59

Graphics credits

Temperature

QCD phase diagram: Overview of recent lattice results - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Conjectured-QCD-phasediagram_fig1_261701898 [accessed 23 Jan, 2019]

Reused with permission under Creative Commons License

