SU(2) gauge theory on digital quantum computers

Jesse Stryker Institute for Nuclear Theory

work done w/ Natalie Klco (INT) & Martin Savage (INT)

arXiv:1908.06935

Lawrence Berkeley National Lab Quantum Computing Mini-Workshop 2019/10/30

INSTITUTE for NUCLEAR THEORY

2/59

Conjectured phase diagram credit: G. Endrödi J.Phys.Conf.Ser. 503 (2014) 012009

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Conjectured phase diagram credit: G. Endrödi J.Phys.Conf.Ser. 503 (2014) 012009

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 3/59

Physics targets:

Conjectured phase diagram credit: G. Endrödi J.Phys.Conf.Ser. 503 (2014) 012009

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 4/59

Physics targets:

- Simulation of quantum chromodynamics (QCD)
 - Hadronization
 - Microscopic understanding of nuclear interactions

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 5/59

INSTITUTE for

Physics targets:

- Simulation of quantum chromodynamics (QCD)
 - Hadronization

Jesse Stryker (INT/UW)

- Microscopic understanding of nuclear interactions
- Complete phase diagram of QCD

Physics targets:

- Simulation of quantum chromodynamics (QCD)
 - Hadronization
 - Microscopic understanding of nuclear interactions
- Complete phase diagram of QCD
- Nuclear equation of state

Jesse Stryker (INT/UW)

Physics targets:

- Simulation of quantum chromodynamics (QCD)
 - Hadronization
 - Microscopic understanding of nuclear interactions
- Complete phase diagram of QCD
- Nuclear equation of state

How to make these predictions?

Physics targets:

- Simulation of quantum chromodynamics (QCD)
 - Hadronization
 - Microscopic understanding of nuclear interactions
- Complete phase diagram of QCD
- Nuclear equation of state

How to make these predictions?

Non-perturbative problems

Physics targets:

- Simulation of quantum chromodynamics (QCD)
 - Hadronization
 - Microscopic understanding of nuclear interactions
- Complete phase diagram of QCD
- Nuclear equation of state

- Non-perturbative problems
- Numerically simulate QCD degrees of freedom

Conjectured phase diagram credit: G. Endrödi J.Phys.Conf.Ser. 503 (2014) 012009

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Temperature

critical

Magnetic field

ndpoint?

collisio

10¹⁵g/cm³

Barvon

density

INSTITUTE fo

10/59

10¹²K

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Wilson gauge action

"link operators"
$$U_{n,\mu}$$
 in gauge group G

$$S_W = -\beta \sum_{n,\mu} \operatorname{tr}(\underbrace{U_{n,\mu}U_{n+e_{\mu},\nu}U_{n+e_{\nu},\mu}^{\dagger}U_{n,\nu}^{\dagger} + U_{\Box}^{\dagger})}_{U_{\Box}}$$
"plaquette" operator
for non-Abelian

Relation to continuum gauge fields:

 $Z = \int \prod_{n,\mu} [\mathcal{D}U_{n,\mu}] e^{-S[U]} \qquad U_{n,\mu} = e^{iaA_{\mu}(x)} \qquad S_W = a^4 \sum_n F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} + \cdots$ Fermionic matter:

> INSTITUTE for NUCLEAR THEOR

> > 17/59

Monte Carlo on this

Wilson gauge action

Relation to continuum gauge fields:

$$U_{n,\mu} = e^{iaA_{\mu}(x)} \qquad S_W = a^4 \sum_n F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} + \cdots$$

Fermionic matter:

Grassmann integrals done analytically → "Fermion determinant"

 $Z = \int \prod_{n,\mu} [\mathcal{D}U_{n,\mu}] e^{-S[U]}$

Euclidean path integral Monte Carlo

- Great for static, equilibrium properties
- Real-time dynamics? Nonzero density? Topological term?

Euclidean path integral Monte Carlo

- Great for static, equilibrium properties
- Real-time dynamics? Nonzero density? Topological term?

-S[U] generically complex-valued

Euclidean path integral Monte Carlo

- Great for static, equilibrium properties
- Real-time dynamics? Nonzero density? Topological term?

 $\begin{array}{l} -S[U] \text{ generically complex-valued} \\ \rightarrow \text{"Sign problems"} \end{array}$

Euclidean path integral Monte Carlo

- Great for static, equilibrium properties
- Real-time dynamics? Nonzero density? Topological term?

-S[U] generically complex-valued \rightarrow "Sign problems"

Exponentially hard to sample oscillating path integral

22/59

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers

2019-10-30 LBNL QC Mini-workshop

Euclidean path integral Monte Carlo

- Great for static, equilibrium properties
- Real-time dynamics? Nonzero density? Topological term?

-S[U] generically complex-valued \rightarrow "Sign problems"

Exponentially hard to sample oscillating path integral

23/59

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers

2019-10-30 LBNL QC Mini-workshop

24/59

Jesse Stryker (INT/UW) SU(2) gauge theory or

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Digital quantum computers:

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 25/59

Digital quantum computers:

Unitary gates: $e^{-it\hat{H}}$ with your favorite Hamiltonian

- Want to simulate non-perturbative gauge theory
 - → Gauge theory on the lattice
 - Hamiltonian lattice gauge theory

Digital quantum computers:

Unitary gates: $e^{-it\hat{H}}$ with your favorite Hamiltonian

- Want to simulate non-perturbative gauge theory
 - → Gauge theory on the lattice
 - → Hamiltonian lattice gauge theory

General problem: How to map the Hilbert space \mathcal{H} and \hat{H} on to the qubits & gates?

2019-10-30 LBNL QC Mini-workshop

Talk outline

- Hamiltonian SU(2) lattice gauge theory
- Plaquette ladder
- Mapping to qubits
- Hardware results from IBM Tokyo
- Summary & future directions

Hamiltonian lattice gauge theory

Canonical quantization, temporal gauge

 $U_{n,i} \rightarrow \hat{U}_{n,i}$ link variables: matrices of operators

Gauge transformations: $\hat{U}_{n,i} \rightarrow \Omega_n \hat{U}_{n,i} \Omega_{n+e_i}^{\dagger}$

$$[E_{L/R}^{a}, E_{L/R}^{b}] = if^{abc}E_{L/R}^{c}$$
$$[E_{R}^{a}, U] = +UT^{a}$$
$$[E_{L}^{a}, U] = -T^{a}U$$

Left, right electric fields to generate left, right rotations.

$$\hat{H}_{E} = \frac{g^{2}}{2} \sum_{n,i} \hat{E}_{n,i}^{a} \hat{E}_{n,i}^{a} \qquad \hat{H}_{B} = -\sum_{n} \frac{1}{2g^{2}} \left(\hat{\Box}_{n} + \hat{\Box}_{n}^{\dagger} \right)$$
$$\hat{\Box}_{n} \equiv \operatorname{tr}(\hat{U}_{n,\Box})$$
gauge invariant Casimir

29/59

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Hilbert space

coordinate-like basis

$$\hat{U}_{ij} |g\rangle = D_{ij}(g) |g\rangle \quad g \in G$$

$$\underline{\text{momentum-like basis}}$$

$$E_L^3 |j, m, m'\rangle = -m |j, m, m'\rangle$$

$$E_R^3 |j, m, m'\rangle = m' |j, m, m'\rangle$$

 $E_L^a E_L^a |j, m, m'\rangle = E_R^a E_R^a |j, m, m'\rangle$ $= j(j+1) |j, m, m'\rangle$

More info: Zohar & Burrello, PRD 91, 054506 (2015)

$$\langle g|j,m,m'\rangle = \sqrt{\frac{d_j}{|G|}} D_{m,m'}^{(j)}(g)$$
 group element state irrep state

Plus Gauss law constraints

Hilbert space

coordinate-like basis

$$\begin{split} \hat{U}_{ij} \left| g \right\rangle &= D_{ij}(g) \left| g \right\rangle \quad g \in G \\ \\ \underline{\text{momentum-like basis}} \\ E_L^3 \left| j, m, m' \right\rangle &= -m \left| j, m, m' \right\rangle \end{split}$$

$$E_R^3 |j, m, m'\rangle = m' |j, m, m'\rangle$$
$$E_L^a E_L^a |j, m, m'\rangle = E_R^a E_R^a |j, m, m'\rangle$$
$$= j(j+1) |j, m, m'\rangle$$

More info: Zohar & Burrello, PRD 91, 054506 (2015)

$$\langle g|j,m,m'\rangle = \sqrt{\frac{d_j}{|G|}} D_{m,m'}^{(j)}(g)$$
 group element state irrep state

Plus Gauss law constraints

• Truncation not ideal for qubit registers

32/59

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle, \quad 0 \le j \le J \qquad d_j = (2j+1)^2$

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle, \quad 0 \le j \le J \qquad d_j = (2j+1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle, \quad 0 \le j \le J \qquad d_j = (2j+1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

• Non-commuting constraints on superpositions

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle, \quad 0 \le j \le J \qquad d_j = (2j+1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

• Non-commuting constraints on superpositions $[\mathcal{G}^a,\mathcal{G}^b]\neq 0 \qquad (\mathcal{G}^a\equiv\nabla\cdot\mathbf{E}^a-\rho^a)$

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle, \quad 0 \le j \le J \qquad d_j = (2j+1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

- Non-commuting constraints on superpositions $[\mathcal{G}^a,\mathcal{G}^b]\neq 0 \qquad (\mathcal{G}^a\equiv \nabla\cdot \mathbf{E}^a-\rho^a)$
- Far too many d.o.f.s carried around

• Truncation not ideal for qubit registers

 $|j, m, m'\rangle, \quad 0 \le j \le J \qquad d_j = (2j+1)^2$

 $\Rightarrow \dim(\mathcal{H}) = (8/3)(J+1/2)(J+3/4)(J+1) \neq 2^n$

- Non-commuting constraints on superpositions $[\mathcal{G}^a, \mathcal{G}^b] \neq 0 \qquad (\mathcal{G}^a \equiv \nabla \cdot \mathbf{E}^a - \rho^a)$
- Far too many d.o.f.s carried around

actual photograph of quantum programmer reacting to |jmm'>

System choice

We consider a periodic **string of plaquettes** or "ladder" \sim "1d," but has H_B

- ✓ 3-pt vertices ↔ unique singlet at vertex for specified j's
- Arbitrary length

Gauge singlet basis

40/59

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Gauge singlet basis

Fully gauge invariant state of lattice with definite link angular momenta:

Gauge singlet basis

Fully gauge invariant state of lattice with definite link angular momenta:

$$\begin{split} |\chi\rangle = \mathcal{N} \sum_{\{m\}} \prod_{i=1}^{L} \langle j_{i}^{t}, m_{i,R}^{t}, j_{i+1}^{t}, m_{i+1,L}^{t} | q_{i}, m_{q_{i}}^{t} \rangle & \} \begin{array}{l} \text{CG's to form singlets at } \\ \text{``top" vertices} \\ \langle j_{i}^{b}, m_{i,R}^{b}, j_{i+1}^{b}, m_{i+1,L}^{b} | q_{i}, m_{q_{i}}^{b} \rangle & \} \begin{array}{l} \text{CG's to form singlets at } \\ \text{``top" vertices} \\ \text{``bottom" vertices} \\ |j_{i}^{t}, m_{i,L}^{t}, m_{i,R}^{t} \rangle \otimes | j_{i}^{b}, m_{i,L}^{b}, m_{i,R}^{b} \rangle \otimes | q_{i}, m_{q_{i}}^{t}, m_{q_{i}}^{b} \rangle & \\ \end{array} \right\} \begin{array}{l} \text{CG's to form singlets at } \\ \text{``bottom" vertices} \\ \text{``bottom" vertices} \end{array}$$

"staple"

INSTITUTE for NUCLEAR THEOR

42/59

• Just using angular momentum addition (Clebsch-Gordan coefficients) to form singlets

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Matrix elements of H

• Non-diagonal elements derive from link operators in H_B : *

• This is all the info needed to compute matrix ||*H* || w.r.t. singlet states

Plaquette operator & gauge-variant completion

- Still have disallowed states
 - Action of plaquette op on disallowed space is arbitrary

→ "Gauge-variant completion" (GVC): Only bother reproducing correct matrix elements between allowed states

Specific truncation, size

For our simulation:

- Cutoff $\Lambda_i = \frac{1}{2}$
- Length L=2
- + Simplifications
 → Four 'active' links

Four qubits represent state

$$j = 0 \rangle \rightarrow |0 \rangle, \quad |j = 1/2 \rangle \rightarrow |1 \rangle$$

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop 45/59

Specific truncation, size

For our simulation:

- Cutoff $\Lambda_i = \frac{1}{2}$
- Length L=2
- + Simplifications
 → Four 'active' links

Four qubits represent state

GVC of plaquette operator

$$\hat{\Box}^{(1/2)} = \Pi_0 X X X + \frac{1}{4} \Pi_1 X X X$$

 $|j_l \ q_l \ j_a \ q_r
angle$

$$j = 0 \rangle \rightarrow |0\rangle, \quad |j = 1/2\rangle \rightarrow |1\rangle$$

INSTITUTE for NUCLEAR THEO

Trotter-Suzuki time evolution

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-3

ligital quantum computers 2019-10-30 LBNL QC Mini-workshop 47/59

Trotter-Suzuki time evolution

Time evolution operator replaced by Trotter-Suzuki approximation

 $e^{-i \Delta t (H_E + H_B)} \simeq e^{-i \Delta t H_E} e^{-i \Delta t \Box_1 / (2g^2)} e^{-i \Delta t \Box_2 / (2g^2)}$

Try: *t* spread over one Trotter step, two Trotter steps, ... starting from strong-coupling vacuum (all j=0)

Trotter-Suzuki time evolution

Jesse Stryker (INT/UW)

Time evolution operator replaced by Trotter-Suzuki approximation

$$e^{-i \Delta t (H_E + H_B)} \simeq e^{-i \Delta t H_E} e^{-i \Delta t \Box_1 / (2g^2)} e^{-i \Delta t \Box_2 / (2g^2)}$$

Try: *t* spread over one Trotter step, two Trotter steps, ... starting from strong-coupling vacuum (all j=0)

- Circuit doesn't introduce further systematics
- Trotterization respects gauge constraints

INSTITUTE for NUCLEAR THEO

From IBM: Probabilities measured in computational basis

1) Constrained inversion \rightarrow pre-measurement probabilities

• Needed because of measurement errors

2) Run simulation with superfluous CNOT pairs inserted

• (CNOT)² = 1, but introduces extra noise

3) Extrapolate pre-measurement probabilities to zero CNOT noise

Probability extrapolation

- Errors into disallowed space mitigated for $N_{\text{Trot}} = 1$
- Coherence is lost for $N_{\rm Trot} > 1$

Jesse Stryker (INT/UW) SU(2) gauge

INSTITUTE fo

Test observable: Plaquette electric energy

- Measure: Electric energy encircling one plaquette
 - Using extrapolated probability densities
- Compare to ideal Trotterized simulation outcome
- $N_{\text{Trot}} = 1$ gets it right within uncertainties!

Summary of hardware results

- First simulation of a truncated SU(2) system done on existing IBM hardware
- Used gauge theory constraints + NISQ-era tricks to mitigate subset of errors
- Low enough circuit depth \rightarrow Can extract an observable

Generalizations, future directions

- Higher cutoff
 - All links now active
 - More interesting GVC
- Higher dimensions
 - 3-point vertices important
 - More qubits, more gates, more noise
 - \rightarrow Maybe not today, but soon?
- SU(3)
 - Schwinger bosons (I. Raychowdhury et al.) may be helpful for computing reduced matrix elements

Thank you for your attention!

Questions?

Helpful conversations with: D. Kaplan, I. Raychowdhury, E. Zohar JRS was supported by DOE Grant No. DE-FG02-00ER41132, and by the National Science Foundation Graduate Research Fellowship under Grant No.1256082.

55/59

Jesse Stryker (INT/UW)

SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Plaquette operator matrix elements

$$\begin{split} \langle \chi_{\cdots,j_{\ell}^{t,b},q_{\ell f},j_{af}^{t,b},q_{r f},j_{r}^{t,b},\dots} | \hat{\Box} | \chi_{\cdots,j_{\ell}^{t,b},q_{\ell i},j_{ai}^{t,b},q_{r i},j_{r}^{t,b},\dots} \rangle = \\ & \sqrt{\dim(j_{ai}^{t})\dim(j_{af}^{t})\dim(j_{af}^{t})\dim(j_{ai}^{b})\dim(j_{af}^{b})} \\ & \times \sqrt{\dim(q_{\ell i})\dim(q_{\ell f})\dim(q_{\ell f})\dim(q_{r i})\dim(q_{r f})} \\ & \times (-1)^{j_{\ell}^{t}+j_{\ell}^{b}+j_{r}^{t}+j_{r}^{b}+2(j_{af}^{t}+j_{af}^{b}-q_{\ell i}-q_{r i})} \\ & \times 0.9 \begin{cases} j_{\ell}^{t} & j_{ai}^{t} & q_{\ell i} \\ \frac{1}{2} & q_{\ell f} & j_{af}^{t} \end{cases} \begin{cases} j_{\ell}^{b} & j_{ai}^{b} & q_{\ell i} \\ \frac{1}{2} & q_{\ell f} & j_{af}^{b} \end{cases} \begin{cases} j_{\ell}^{b} & j_{ai}^{b} & q_{\ell i} \\ \frac{1}{2} & q_{\ell f} & j_{af}^{t} \end{cases} \end{cases} \begin{cases} j_{r}^{b} & j_{ai}^{b} & q_{r i} \\ \frac{1}{2} & q_{r f} & j_{af}^{t} \end{cases} \end{cases} \end{split}$$

Plaquette operator matrix elements

$\langle j_{\ell f} \; q_{\ell f} \; j_{af} \; q_{rf} \; j_{rf} \hat{\Box}^{(1/2)} j_{\ell i} \; q_{\ell i} \; j_{ai} \; q_{ri} \; j_{ri} angle$	
$\langle 00000 \hat{\Box}^{(1/2)} 0\frac{1}{2}\frac{1}{2}\frac{1}{2}0 \rangle, \langle 0\frac{1}{2}\frac{1}{2}\frac{1}{2}0 \hat{\Box}^{(1/2)} 00000 \rangle$	1
$\langle 000\frac{1}{2}\frac{1}{2} \hat{\Box}^{(1/2)} 0\frac{1}{2}\frac{1}{2}0\frac{1}{2}\rangle, \langle 0\frac{1}{2}\frac{1}{2}0\frac{1}{2} \hat{\Box}^{(1/2)} 000\frac{1}{2}\frac{1}{2}\rangle$	$\frac{1}{2}$
$\langle \frac{1}{2} \frac{1}{2} 000 \hat{\Box}^{(1/2)} \frac{1}{2} 0 \frac{1}{2} \frac{1}{2} 0 \rangle, \langle \frac{1}{2} 0 \frac{1}{2} \frac{1}{2} 0 \hat{\Box}^{(1/2)} \frac{1}{2} \frac{1}{2} 000 \rangle$	$\frac{1}{2}$
$\langle \frac{1}{2}0\frac{1}{2}0\frac{1}{2} \hat{\Box}^{(1/2)} \frac{1}{2}\frac{1}{2}0\frac{1}{2}\frac{1}{2}\rangle, \langle \frac{1}{2}\frac{1}{2}0\frac{1}{2}\frac{1}{2} \hat{\Box}^{(1/2)} \frac{1}{2}0\frac{1}{2}0\frac{1}{2}\rangle$	$\frac{1}{4}$

TABLE I. Non-zero matrix elements of the $\Lambda_j = 1/2$ plaquette operator $\hat{\Box}^{(1/2)}$ as calculated in Eq. (6) with $j_{\ell,a,r}^t = j_{\ell,a,r}^b$. All other matrix elements between physical states are zero.

For length L > 2:

$$\hat{\Box}^{(1/2)} = \Pi_0 X X X \Pi_0 + \frac{1}{2} \Pi_0 X X X \Pi_1 \\ + \frac{1}{2} \Pi_1 X X X \Pi_0 + \frac{1}{4} \Pi_1 X X X \Pi_1$$

IBM Tokyo Q20 specs

	Qul	Qubit Connectivity			T1 (μsec)			T2 (μsec)		
Qubit Count	Min	Max	Ave	Min	Max	Ave	Min	Max	Ave	
20	2	6	3.9	42.2	148.5	84.3	24.3	78.4	49.6	
1-Qubit Gate Fidelity 2-Qub				oit Gate Fidelity Re			adout Fidelity			
Min	Мах	Ave	Min	Мах	Ave	Mir	1	Max	Ave	
99.39%	99.94%	99.80%	92.88 %	98.53%	97.16%	6 N/A	1	N/A	91.72%	

58/59

Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers 2019-10-30 LBNL QC Mini-workshop

Graphics credits

Temperature

QCD phase diagram: Overview of recent lattice results -Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Conjectured-QCD-phasediagram_fig1_261701898 [accessed 23 Jan, 2019]

Reused with permission under Creative Commons License

