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Big picture

Physics targets:
● Simulation of quantum 

chromodynamics (QCD)
● Hadronization
● Microscopic understanding of nuclear 

interactions
● Complete phase diagram of 

QCD
● Nuclear equation of state

How to make these predictions?
● Non-perturbative problems
● Numerically simulate QCD degrees of freedom

Conjectured phase diagram credit: G. Endrödi J.Phys.Conf.Ser. 503 (2014) 012009

https://doi.org/10.1016/j.physa.2014.11.005
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Traditional lattice ingredients

Relation to continuum gauge fields:

Wilson gauge action

for non-Abelian

Fermionic matter:
● Grassmann integrals done analytically → “Fermion 

determinant”
Monte Carlo on this



2019-10-30  LBNL QC Mini-workshop 19/59Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers

Traditional lattice

Euclidean path integral Monte Carlo
● Great for static, equilibrium properties
● Real-time dynamics?  Nonzero density?  Topological term?
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Classical problems.. quantum solutions?

Digital quantum computers:

General problem:
How to map the Hilbert 
space       and         on to

the qubits & gates?

Unitary gates:              with your 
favorite Hamiltonian
● Want to simulate non-perturbative 

gauge theory
➔ Gauge theory on the lattice
➔ Hamiltonian lattice gauge theory
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Talk outline

● Hamiltonian SU(2) lattice gauge theory
● Plaquette ladder
● Mapping to qubits
● Hardware results from IBM Tokyo
● Summary & future directions
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Hamiltonian lattice gauge theory

Canonical quantization, temporal gauge

gauge invariant Casimir

Left, right electric fields to generate 
left, right rotations.

link variables: matrices of operators
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Hilbert space

Plus Gauss law constraints

irrep stategroup element 
state

coordinate-like basis

momentum-like basis

More info: Zohar & Burrello, PRD 91, 054506 (2015)

https://doi.org/10.1103/PhysRevD.91.054506
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Hilbert space

Plus Gauss law constraints

lattice discrete 
“divergence”

irrep stategroup element 
state

coordinate-like basis

momentum-like basis

More info: Zohar & Burrello, PRD 91, 054506 (2015)

https://doi.org/10.1103/PhysRevD.91.054506
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|j m m’> in practice

● Non-commuting constraints on superpositions

● Truncation not ideal for qubit registers

● Far too many d.o.f.s carried around

actual photograph of quantum 
programmer reacting to |jmm’>
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System choice

We consider a periodic string of plaquettes or “ladder”
✔ “1d,” but has HB

✔ 3-pt vertices ↔ unique singlet at vertex for specified j’s
✔ Arbitrary length
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Gauge singlet basis

Fully gauge invariant state of lattice with definite link angular 
momenta:

● Just using angular momentum addition 
(Clebsch-Gordan coefficients) to form singlets

} Kets going 
around each 
“staple”

} CG’s to form singlets at 
   “top” vertices
} CG’s to form singlets at 
   “bottom” vertices

periodically wrapped
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Matrix elements of H

● Non-diagonal elements derive from link operators in HB : *

● This is all the info needed to compute matrix ||H || w.r.t. 
singlet states

each link op going 
round a plaquette 
“adds” ½-unit of 

angular momentum:
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Plaquette operator & gauge-variant completion

● With reduced/singlet basis, matrix elements of     depend on 
plaquette’s j ’s, as well as adjacent j ’s

● Still have disallowed states
● Action of plaquette op on disallowed space is arbitrary

→ “Gauge-variant completion” (GVC): Only bother 
reproducing correct matrix elements between allowed states



2019-10-30  LBNL QC Mini-workshop 45/59Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers

Specific truncation, size

For our simulation: 
● Cutoff Λj = ½
● Length L=2

+ Simplifications
→ Four ‘active’ links

Four qubits represent state
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Specific truncation, size

For our simulation: 
● Cutoff Λj = ½
● Length L=2

+ Simplifications
→ Four ‘active’ links

Four qubits represent state

GVC of plaquette operator
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Trotter-Suzuki time evolution
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approximation

Try: t spread over one Trotter step, two Trotter steps, …
starting from strong-coupling vacuum (all j=0)
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Trotter-Suzuki time evolution

Time evolution operator replaced by Trotter-Suzuki 
approximation

Try: t spread over one Trotter step, two Trotter steps, …
starting from strong-coupling vacuum (all j=0)

● Circuit doesn’t introduce further systematics
● Trotterization respects gauge constraints
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Data processing

From IBM: Probabilities measured in computational basis

1) Constrained inversion → pre-measurement probabilities
● Needed because of measurement errors

2) Run simulation with superfluous CNOT pairs inserted
● (CNOT)2 = 1, but introduces extra noise

3) Extrapolate pre-measurement probabilities to zero 
CNOT noise

→ 
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Probability extrapolation

● Errors into disallowed space mitigated for NTrot = 1
● Coherence is lost for NTrot > 1 
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Test observable: Plaquette electric energy

● Measure: Electric energy encircling one plaquette
● Using extrapolated probability densities

● Compare to ideal Trotterized simulation outcome
● NTrot = 1 gets it right within uncertainties!
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Summary of hardware results

● First simulation of a truncated SU(2) system done on 
existing IBM hardware

● Used gauge theory constraints + NISQ-era tricks to 
mitigate subset of errors

● Low enough circuit depth → Can extract an observable
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Generalizations, future directions

● Higher cutoff
● All links now active
● More interesting GVC

● Higher dimensions
● 3-point vertices important
● More qubits, more gates, more noise

→ Maybe not today, but soon?
● SU(3)

● Schwinger bosons (I. Raychowdhury et al.) may be helpful for 
computing reduced matrix elements
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FIN

Thank you for your attention!

Questions?

JRS was supported by DOE Grant No. DE-FG02-00ER41132, and by the National 
Science Foundation Graduate Research Fellowship under Grant No.1256082.

Helpful conversations with: D. Kaplan, I. Raychowdhury, E. Zohar



2019-10-30  LBNL QC Mini-workshop 56/59Jesse Stryker (INT/UW) SU(2) gauge theory on digital quantum computers

Plaquette operator matrix elements
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Plaquette operator matrix elements

For length L > 2:
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IBM Tokyo Q20 specs
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Graphics credits

QCD phase diagram: Overview of recent lattice results - 
Scientific Figure on ResearchGate. Available from: 
https://www.researchgate.net/figure/Conjectured-QCD-phase-
diagram_fig1_261701898 [accessed 23 Jan, 2019]

Reused with permission under Creative Commons License
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