

Characterizing system dynamics with two-particle transverse momentum correlations in pp, p–Pb, and Pb–Pb collisions at ALICE

Víctor González for the ALICE collaboration

Wayne State University, Detroit, USA

Initial Stages 2021 10 - 15 January, 2021

\leftarrow longer system lifetime

Two-particle transverse momentum correlation

$$G_{2}(\Delta\eta,\Delta\varphi) = \frac{1}{\langle p_{\rm T} \rangle^{2}} \left[\frac{\langle \sum_{i}^{n_{1,1}} \sum_{j\neq i}^{n_{1,1}} p_{{\rm T},i} p_{{\rm T},j} \rangle}{\langle n_{1,1} \rangle \langle n_{1,2} \rangle} - \langle p_{{\rm T},1} \rangle \langle p_{{\rm T},2} \rangle \right]$$

Sensitive to momentum currents transferLongitudinal shape encodes viscous effects

Drag between neighboring fluid cells broadens G_2 correlator

Gavin, Abdel-Aziz, PRL 97, 162302 (2006) Gavin, Moschelli, Zin, PRC 94, 024921 (2016)

STAR, PLB 704, 467-473 (2011)

η/s from two-particle transverse momentum correlation function G_2

ALICE, PLB 804, 135375 (2020)

- STAR $\Rightarrow \eta/s$ in the range 0.06 0.21
- ALICE \Rightarrow measured correlator widths favor values of η/s close to the KSS¹ limit $1/4\pi$

¹Kovtun, Son, Starinets, PRL 94, 111601 (2005)

pp at $\sqrt{s} = 7$ TeV and p–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV, $G_2^{\rm CI}$ and $G_2^{\rm CD}$ 30–40% multiplicity class

ALICE preliminary ALICE preliminary $pp \sqrt{s} = 7 \text{ TeV}$ p-Pb √*s*_{NN} = 5.02 TeV 30-40% 30-40% ×10⁻³ CI CI 5 (n^N 400-Charge independent (CI) 800 300-600 200 $\mathsf{CI} = \frac{1}{4} \{ (+-) + (-+) + (--) + (++) \}$ 400 200 100 -1.5 -1 -0.5 0 0.5 (rad) (ran) -1.5 -1 Δŋ A n ALICE preliminary ALICE preliminary $pp \sqrt{s} = 7 \text{ TeV}$ p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 30-40% 30-40% CD CD വ്പ (n[°] 0.15-Charge dependent (CD) 0.1 40 0.05 20 $\mathsf{CD} = \frac{1}{4} \{ (+-) + (-+) - (--) - (++) \}$ (rad) -1.5 -1 -0.5 (rag) -1.5 -1 -1 ΔŊ

pp at \sqrt{s} = 7, p–Pb at $\sqrt{s_{\rm NN}}$ = 5.02, Pb–Pb at $\sqrt{s_{\rm NN}}$ = 2.76 TeV $G_2^{\rm CI}$ widths evolution

- Trend breaks in both dimensions in the evolution from small to large systems
- Consistent azimuthal narrowing trend along the three systems
- Completely different longitudinal evolution

Models comparison G_2^{CD} widths evolution

Correlator narrowing reproduced by Pythia6 Perugia-2011
DPMJET not sensitive to multiplicity evolution

$\begin{array}{l} \mbox{Models comparison} \\ G_2^{\rm CI} \mbox{ widths evolution} \end{array}$

Longitudinal narrowing captured by Pythia6 but misses the trend
Flat evolution of DPMJET

Conclusions

– The $G_2^{\rm CI}$ correlator, which potentially captures viscous effects, changes behavior in the longitudinal dimension from narrowing to broadening when going from pp to p–Pb and to Pb–Pb

- Azimuthal narrowing consistent in all three systems

- What is the origin of the interplay between narrowing and broadening trends observed when moving towards larger systems?

- Pythia6 Perugia-2011 qualitatively captures the narrowing in pp
 - \blacksquare Reproduces $G_2^{\rm CD}$ narrowing trend
 - Fails to reproduce G_2^{CI}