

Constraints on the initial state from heavy gauge boson and photon production in ALICE Initial Stages, 10-15 Jan 2021

Sizar Aziz for the ALICE collaboration

s.aziz@cern.ch IJCLab, CNRS/IN2P3, Université Paris-Saclay

- QCD hard scatterings involve partonic cross sections
- Sensitive to parton distribution functions PDFs $\rightarrow f_q(x, Q^2)$
- Nuclear environment modifies proton PDFs —> need for nuclear PDFs (nPDFs)

Free proton PDFs at Q^2 = 2 (left) and 100 (right) GeV²

- QCD hard scatterings involve partonic cross sections
- Sensitive to parton distribution functions PDFs $\rightarrow f_q(x, Q^2)$
- Nuclear environment modifies proton PDFs → need for nuclear PDFs (nPDFs)

Ratio of proton-in-nucleus PDF to free proton PDF

- QCD hard scatterings involve partonic cross sections
- Sensitive to parton distribution functions PDFs $\rightarrow f_q(\mathbf{x}, Q^2)$
- Nuclear environment modifies proton PDFs → need for nuclear PDFs (nPDFs)

ur.Pł

Electroweak (EW) bosons

- Produced in early stages of collision
 - Cross sections calculated with perturbative QCD (NLO precision)
- Carry no color charge
 - In leptonic decay channels insensitive to QCD medium
- Sensitive to (nuclear) parton distribution functions
 - W and Z created in $q\bar{q}$ annihilation
 - **Prompt** photons created in quark-gluon Compton Scattering $qg \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma g$ annihilation

(n)PDFs obtained from global fits to data

ightarrow measurements of EW boson production can help constrain them

Electroweak (EW) bosons

- Produced in early stages of collision
 - Cross sections calculated with perturbative QCD (NLO precision)
- Carry no color charge
 - In leptonic decay channels insensitive to QCD medium
- Sensitive to (nuclear) parton distribution functions
 - W and Z created in $q\bar{q}$ annihilation
 - **Prompt** photons created in quark-gluon Compton Scattering $qg \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma g$ annihilation

(n)PDFs obtained from global fits to data

ightarrow measurements of EW boson production can help constrain them

Electroweak (EW) bosons

- Produced in early stages of collision
 - Cross sections calculated with perturbative QCD (NLO precision)
- Carry no color charge
 - In leptonic decay channels insensitive to QCD medium
- Sensitive to (nuclear) parton distribution functions
 - W and Z created in $q\bar{q}$ annihilation
 - **Prompt** photons created in quark-gluon Compton Scattering $qg \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma g$ annihilation

(n)PDFs obtained from global fits to data

ightarrow measurements of EW boson production can help constrain them

Electroweak (EW) bosons

- Produced in early stages of collision
 - Cross sections calculated with perturbative QCD (NLO precision)
- Carry no color charge
 - In leptonic decay channels insensitive to QCD medium
- Sensitive to (nuclear) parton distribution functions
 - W and Z created in $q\bar{q}$ annihilation
 - **Prompt** photons created in quark-gluon Compton Scattering $qg \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma g$ annihilation

(n)PDFs obtained from global fits to data

 \rightarrow measurements of EW boson production can help constrain them

ALICE Detector

ALICE Detector

- Muon Spectrometer
 - Used for Z and W analyses
 - Identifies and reconstructs μ tracks, $-4 < \eta_{\mu} < -2.5$
 - Forward rapidity \rightarrow both low and high Bjorken-x

ALICE Detector

- Central Barrel
 - Used for isolated photon analysis
 - EMCal \rightarrow photons, $|\eta| < 0.7, 80^{\circ} < \varphi < 187^{\circ}$
 - ITS and TPC \rightarrow charged particles, $|\eta|$ < 0.9, full φ

Analysis method W bosons

- Measured through $W \rightarrow \mu \nu$ decay
- No possibility to reconstruct neutrino through missing transverse energy / momentum with ALICE detector
- W decay muon yield obtained through fits of p_T distributions using MC template functions

Corrected for detector acceptance and reconstruction efficiency ε

Fiducial region of measurement

•
$$-4 < \eta_{\mu} < -2.5$$

• $p_{T}^{\mu} > 10 \text{ GeV/c}$

Analysis method W bosons

- Measured through $W \rightarrow \mu \nu$ decay
- No possibility to reconstruct neutrino through missing transverse energy / momentum with ALICE detector
- W decay muon yield obtained through fits of $p_{\rm T}$ distributions using MC template functions
 - Corrected for detector acceptance and reconstruction efficiency ε

Fiducial region of measurement

•
$$-4 < \eta_{\mu} < -2.5$$

• $p_{_{\rm T}}^{\mu}$ > 10 GeV/c

Analysis method W bosons

- Measured through $W \rightarrow \mu \nu$ decay
- No possibility to reconstruct neutrino through missing transverse energy / momentum with ALICE detector
- W decay muon yield obtained through fits of $p_{\rm T}$ distributions using MC template functions
 - Corrected for detector acceptance and reconstruction efficiency ε

Fiducial region of measurement

•
$$-4 < \eta_{\mu} < -2.5$$

• $p_{_{\rm T}}^{\mu}$ > 10 GeV/c

Analysis method Z bosons

- Measured through $Z \rightarrow \mu \mu$ decay
- Invariant mass distribution of dimuons computed
- Raw yield obtained by histogram entry counts within 60-120 GeV/c²
 - Up to 1% background in this interval
 - Raw yield corrected for detector acceptance and reconstruction efficiency ε

Fiducial region of measurement

• $-4 < \eta_{\mu} < -2.5$

•
$$p_{_{
m T}}^{\mu} > 20 \; {
m GeV/c}$$

• 60 < $m_{\mu\mu}$ < 120 GeV/ c^2

Analysis method Z bosons

- Measured through $Z \rightarrow \mu \mu$ decay
- Invariant mass distribution of dimuons computed
- Raw yield obtained by histogram entry counts within 60-120 GeV/c²
 - Up to 1% background in this interval
 - Raw yield corrected for detector acceptance and reconstruction efficiency ε

Fiducial region of measurement

• $-4 < \eta_{\mu} < -2.5$

•
$$p_{\rm T}^{\mu} > 20 \; {\rm GeV}/c$$

• $60 < m_{\mu\mu} < 120 \, {\rm GeV}/c^2$

• 2.5 <
$$y_{\mu\mu}$$
 < 4

Analysis method Z bosons

- Measured through $Z \rightarrow \mu \mu$ decay
- Invariant mass distribution of dimuons computed
- Raw yield obtained by histogram entry counts within 60-120 GeV/c²
 - Up to 1% background in this interval
 - Raw yield corrected for detector acceptance and reconstruction efficiency ε

Fiducial region of measurement

• $-4 < \eta_{\mu} < -2.5$

•
$$p_{\rm T}^{\mu} > 20 \; {\rm GeV}/c$$

• $60 < m_{\mu\mu} < 120 \, {\rm GeV}/c^2$

- Signal: isolated prompt photons
- Background: photons from neutral meson decays and fragmentation photons
- 3 step procedure to obtain signal

- 1. Isolation selection
 - Define cone *R* around photon, with

 $R = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$

- $p_{\mathrm{T}}^{\mathrm{iso}} = \sum_{\textit{R} < 0.4} p_{\mathrm{T}}$ of neutral and charged particles
- Isolation criterium: $p_{_{
 m T}}^{
 m iso}$ < 2 ${
 m GeV}/a$
- Removes photons from neutral meson decays as well as from jets (bremsstrahlung or fragmentation)
- 2. Cluster shower shape selection
- 3. Purity estimation

- 1. Isolation selection
 - Define cone *R* around photon, with

 $R = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$

- $p_{
 m T}^{
 m iso} = \sum_{\it R<0.4} p_{
 m T}$ of neutral and charged particles
- Isolation criterium: $p_{_{\mathrm{T}}}^{\mathrm{iso}}$ < 2 GeV/c
- Removes photons from neutral meson decays as well as from jets (bremsstrahlung or fragmentation)

2. Cluster shower shape selectio

3. Purity estimation

- 1. Isolation selection
- 2. Cluster shower shape selection
 - Geometrical variable $\sigma^2_{
 m long}$ computed
 - − Isolated photons deposit most energy in a single cluster → circular cluster shape → low σ_{long}^2
 - In decays or jets, cluster can overlap with other decay photon or jet fragment cluster \rightarrow elliptical cluster shape \rightarrow high σ_{long}^2
 - Shower shape criterium: only photons with low $\sigma_{
 m lon}^2$

- 1. Isolation selection
- 2. Cluster shower shape selection
 - Geometrical variable $\sigma^2_{
 m long}$ computed
 - Isolated photons deposit most energy in a single cluster → circular cluster shape → low σ_{long}^2
 - In decays or jets, cluster can overlap with other decay photon or jet fragment cluster \rightarrow elliptical cluster shape \rightarrow high σ_{long}^2
 - Shower shape criterium: only photons with low $\sigma_{
 m low}^2$

- 1. Isolation selection
- 2. Cluster shower shape selection
 - Geometrical variable $\sigma^2_{
 m long}$ computed
 - − Isolated photons deposit most energy in a single cluster → circular cluster shape → low σ_{long}^2
 - In decays or jets, cluster can overlap with other decay photon or jet fragment cluster → elliptical cluster shape
 - $ightarrow ext{high} \overline{\sigma_{ ext{long}}^2}$
 - Shower shape criterium: only photons with low $\sigma_{
 m low}^2$

- 1. Isolation selection
- 2. Cluster shower shape selection
 - Geometrical variable $\sigma^2_{
 m long}$ computed
 - − Isolated photons deposit most energy in a single cluster → circular cluster shape → low σ_{long}^2
 - In decays or jets, cluster can overlap with other decay photon or jet fragment cluster → elliptical cluster shape → high σ_{long}^2
 - Shower shape criterium: only photons with low σ_{low}^2

• 3. Purity estimation

- 1. Isolation selection
- 2. Cluster shower shape selection
- 3. Purity estimation
 - Photon decays from high- $p_{\rm T}$ mesons also have low $\sigma_{\rm long}^2$!
 - Purity estimation done with ABCD method (backup)
 - » Used in ALICE (Eur.Phys.J.C 79 (2019) 11, 896) and ATLAS (Phys.Rev.D 89 (2014) 5, 052004) measurements

- 1. Isolation selection
- 2. Cluster shower shape selection
- 3. Purity estimation
 - Photon decays from high- $p_{\rm T}$ mesons also have low $\sigma_{
 m long}^2$!
 - Purity estimation done with ABCD method (backup)
 - » Used in ALICE (Eur.Phys.J.C 79 (2019) 11, 896) and ATLAS (Phys.Rev.D 89 (2014) 5, 052004) measurements

Results (preliminary) W bosons in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$

- W⁻ cross section shows agreement with free-nucleon PDFs and nPDFs, at forward and backward rapidity
 - MFCM: Eur.Phys.J.C 77 (2017) + CT14
 Phys.Rev.D 93 (2016)
 - EPPS16: Eur.Phys.J.C 77 (2017)

 W⁺ cross section deviates from free-nucleon PDF prediction by 2.7σ at forward rapidity

Results (preliminary) W bosons in p-Pb at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

- W⁻ cross section shows agreement with free-nucleon PDFs and nPDFs, at forward and backward rapidity
 - MFCM: Eur.Phys.J.C 77 (2017) + CT14
 Phys.Rev.D 93 (2016)
 - EPPS16: Eur.Phys.J.C 77 (2017)

 W⁺ cross section deviates from free-nucleon PDF prediction by 2.7σ at forward rapidity

Results (preliminary) W bosons in p-Pb at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

 W⁻ backward y-differential cross section increases more strongly towards midrapidity than free-nucleon PDF and nPDF

 W⁺ forward y-differential cross section deviates from free-nucleon PDF prediction by 3.7σ in most forward bin

Results (preliminary) W bosons in p-Pb at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

 W⁻ backward y-differential cross section increases more strongly towards midrapidity than free-nucleon PDF and nPDF

 W⁺ forward y-differential cross section deviates from free-nucleon PDF prediction by 3.7*o* in most forward bin

Results (preliminary) W bosons in Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,{\rm TeV}$

- Cross sections decrease towards peripheral events
 - Higher W⁻ yield reflects neutron down quark content
- Yield normalized by nuclear thickness function T_{AA} consistent with flat behaviour
 - Expected from NN collision scaling
- SAziz Preliminary results, obtained from \sim 30% of the $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$ Pb–Pb data set

Results (preliminary)

W bosons in Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02 \,{\rm TeV}$

- Cross sections decrease towards peripheral events
 - Higher W⁻ yield reflects neutron down quark content
- Yield normalized by nuclear thickness function $T_{\rm AA}$ consistent with flat behaviour
 - Expected from NN collision scaling

• Preliminary results, obtained from \sim 30% of the $\sqrt{s_{\rm NN}}$ = 5.02 TeV Pb–Pb data s

Results (preliminary)

W bosons in Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02 \,{\rm TeV}$

- Cross sections decrease towards peripheral events
 - Higher W⁻ yield reflects neutron down quark content
- Yield normalized by nuclear thickness function T_{AA} consistent with flat behaviour
 - Expected from NN collision scaling
- ^{S.Aziz} Preliminary results, obtained from ~30% of the $\sqrt{s_{\rm NN}} = 5.02 \,{\rm TeV}$ Pb–Pb data set ^{10/15}

Z bosons in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \, {\rm TeV}$

- Both free-nucleon PDFs and nPDFs agree with data
 - No strong conclusions due to experimental uncertainties and similarity of predictions
 - nPDFs: CT14 + EPPS16 and FEWZ (CPC 182(2011)) + nCTEQ15 (Phys.Rev.D93, 085037 (2016))

S Aziz

Z bosons in Pb–Pb at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

- Integrated invariant yield (left) deviates from free PDF by 3.4σ, agrees with several nPDF predictions
 - Lower yield due to convolution of shadowing at low x and EMC-effect at high x

S Aziz

Z bosons in Pb–Pb at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

- Integrated invariant yield (left) deviates from free PDF by 3.4σ, agrees with several nPDF predictions
 - Lower yield due to convolution of shadowing at low x and EMC-effect at high x

S.Aziz

• y-differential invariant yield (right) shows larger deviations at larger rapidity

Results

Z bosons in Pb–Pb at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

- Integrated invariant yield (left) deviates from free PDF by 3.4*o*, agrees with several nPDF predictions
 - Lower yield due to convolution of shadowing at low x and EMC-effect at high x

Isolated photons in pp at $\sqrt{s} = 7 \text{ TeV}$

- Cross section versus p_T shows good agreement with JETPHOX (NLO pQCD) calculations (Phys.Rev. D73 (2006))
 - CT14 PDF set, BFG II for fragmentation (Eur.Phys.J.C 2 (1998))

13/15

Results (preliminary)

Isolated photons in p–Pb at $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$

- Agreement between several JETPHOX calculations and data
 - Both EPPS16 as well as NCTEQ15np nPDFs describe data
 - BFG II used as fragmentation function 14/15

- W boson production cross section measured at forward rapidity in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$
 - Production described by nPDFs and in Pb-Pb binary scaling is observed
 - 2.7 σ deviation from free PDF for W⁺ in p-Pb
- Z production measured at forward rapidity in p–Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$ (JHEP 09 (2020) 076)
 - p–Pb cross section described by free-nucleon PDF and nPDF
 - In Pb-Pb, 3.4σ deviation seen from free-nucleon PDF
- Isolated photon production cross section measured in pp at $\sqrt{s} = 7 \text{ TeV}$ (Eur.Phys.J.C 79 (2019) 11, 896) and p-Pb at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
 - Good agreement is seen between data and NLO pQCD calculations
- Data can serve as constraints for future nPDF fits

- W boson production cross section measured at forward rapidity in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$
 - Production described by nPDFs and in Pb-Pb binary scaling is observed
 - 2.7 σ deviation from free PDF for W⁺ in p-Pb
- Z production measured at forward rapidity in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$ (JHEP 09 (2020) 076)
 - p-Pb cross section described by free-nucleon PDF and nPDF
 - In Pb-Pb, 3.4 σ deviation seen from free-nucleon PDF
- Isolated photon production cross section measured in pp at $\sqrt{s} = 7 \text{ TeV}$ (Eur.Phys.J.C 79 (2019) 11, 896) and p-Pb at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
 - Good agreement is seen between data and NLO pQCD calculations
- Data can serve as constraints for future nPDF fits

- W boson production cross section measured at forward rapidity in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$
 - Production described by nPDFs and in Pb-Pb binary scaling is observed
 - 2.7 σ deviation from free PDF for W⁺ in p-Pb
- Z production measured at forward rapidity in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$ (JHEP 09 (2020) 076)
 - p-Pb cross section described by free-nucleon PDF and nPDF
 - In Pb-Pb, 3.4 σ deviation seen from free-nucleon PDF
- Isolated photon production cross section measured in pp at $\sqrt{s} = 7 \text{ TeV}$ (Eur.Phys.J.C 79 (2019) 11, 896) and p-Pb at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
 - Good agreement is seen between data and NLO pQCD calculations
- Data can serve as constraints for future nPDF fits

- W boson production cross section measured at forward rapidity in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$
 - Production described by nPDFs and in Pb-Pb binary scaling is observed
 - 2.7 σ deviation from free PDF for W⁺ in p-Pb
- Z production measured at forward rapidity in p-Pb at $\sqrt{s_{\rm NN}} = 8.16 \,\mathrm{TeV}$ and Pb-Pb at $\sqrt{s_{\rm NN}} = 5.02 \,\mathrm{TeV}$ (JHEP 09 (2020) 076)
 - p-Pb cross section described by free-nucleon PDF and nPDF
 - In Pb-Pb, 3.4 σ deviation seen from free-nucleon PDF
- Isolated photon production cross section measured in pp at $\sqrt{s} = 7 \text{ TeV}$ (Eur.Phys.J.C 79 (2019) 11, 896) and p-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - Good agreement is seen between data and NLO pQCD calculations
- Data can serve as constraints for future nPDF fits

Backup

W boson fitting template

 $f(p_{\mathrm{T}}) = N_{\mu \leftarrow \mathrm{bkg}} \cdot f_{\mu \leftarrow \mathrm{bkg}}(p_{\mathrm{T}}) + N_{\mu \leftarrow W}(f_{\mu \leftarrow W} + R \cdot f_{\mu \leftarrow Z})$

- Heavy flavor background from c and b decays
 - Generated using FONLL (JHEP 10(2012)137) calculations
- Signal from W and Z
 - Generated using POWHEG (HEP 07(2008)060) with EPS09 (JHEP 04(2009)065) nPDF
- $f_x(p_T)$ obtained from MC templates
- Free fit parameters $N_{\mu \leftarrow bkg}$ and $N_{\mu \leftarrow W}$
 - No free $N_{\mu \leftarrow Z}$!
 - Instead, fixed to ratio R of cross section of Z/W

Isospin weighting

• In p–Pb collisions, quantity x (efficiency or yield)

$$-x_{\rm p-Pb} = \frac{Z}{A}x_{\rm pp} + \frac{A-Z}{A}x_{\rm pn}$$

• in Pb–Pb collisions

$$- x_{\rm Pb-Pb} = \frac{Z^2}{A^2} x_{\rm pp} + \frac{(A-Z)^2}{A^2} x_{\rm nn} + \frac{Z(A-Z)}{A^2} (x_{\rm pn} + x_{\rm np})$$

Z boson signal extraction in p-Pb

• Invariant mass distribution in Pb-going (left) and p-going (right) collisions

ABCD method for purity estimation

• Estimation based on 2 assumptions

S Aziz

- 1. Ratio of non-isolated / isolated background same in narrow and wide σ_{long}^2 , B / D = A / C
- 2. No signal in B, C and D regions
- Assumptions are evaluated and corrected via MC simulations
 - Correlation between shower shape and isolation criteria taken into account

Shower shape distribution

- Single dashed lines indicate shower shape selection region
- Most single photons reconstructed with $\sigma_{
 m long}^2 pprox 0.25$

Isolated photon efficiency and purity versus $p_{\rm T}$ pp at $\sqrt{s} = 7 \,{\rm TeV}$

- Left: Isolated photon efficiency versus p_{T}
- Right: Isolated photon purity versus p_{T}

Comparison plots isolated photons *pp* collisions at $\sqrt{s} = 7 \text{ TeV}$

- Left: Comparison of data/theory for various LHC experiments
- Right: Cross section comparison as a function of \sqrt{s}

W boson production in other LHC experiments

- (left) Results from CMS in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$ •
 - Consistent with expectation from binary scaling
- (right) Results from ATLAS in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 \,{\rm TeV}$
 - Slight tension in central events

62

nart

Z boson production in other LHC experiments

- No tension for Z boson production in ATLAS
 - Contrary to W boson production at same energy!