

Fluctuations and correlations of flow in heavy-ion collisions measured by ALICE

Initial stages 2021

Emil Gorm Nielsen (Niels Bohr Institute) for the ALICE collaboration

emil.gorm.nielsen@cern.ch

VILLUM FONDEN > VELUX FONDEN

Probe QGP with anisotropic flow

- QGP created in heavy-ion collisions can be probed via anisotropic flow
- Initial spatial anisotropy is transferred via large pressure gradients to final state momentum anisotropy

$$\frac{dN}{d\varphi} \propto 1 + 2 \sum_{n=1}^{\infty} V_n e^{in\varphi}$$

 Comparing data with theoretical models allow for extraction of QGP properties

p_{T} -dependent flow vector fluctuations

Flow vector may fluctuate with p_{T}

- Hydro model predicted additional flow angle and flow magnitude fluctuations
- Cannot be disentangled with current observables based on 2-particle correlations
- Non-hydro models does not have these fluctuations
- Quantifying additional fluctuations is necessary for correctly estimating QGP properties with high p_{T} flow measurements

lead to discrepancy between model and data

Probing flow vector fluctuations with $v_n\{2\}/v_n[2]$

Observable to probe flow vector fluctuations

$$\frac{v_n\{2\}}{v_n[2]} = \underbrace{\frac{\langle v_n(p_{\mathrm{T}}^a) \ v_n \cos n[\Psi_n(p_{\mathrm{T}}^a) - \Psi_n] \rangle}{\langle v_n^2(p_{\mathrm{T}}^a) \rangle}}_{\text{Flow magnitude fluctuations}} \rightarrow \text{Flow magnitude fluctuations}$$

Standard 2-particle correlation $v_n\{2\} = \frac{\langle v_n(p_T) \ v_n \cos n[\Psi_n(p_T) - \Psi_n] \rangle}{\sqrt{\langle v_n^2 \rangle}}$ $v_n[2] = \sqrt{\langle v_n^2(p_T^a) \rangle}$

- $v_n\{2\}$ has contribution from flow angle and assumes factorisation of $\langle v_n(p_{\rm T}) \ v_n \rangle = \sqrt{\langle v_n^2(p_{\rm T}) \rangle} \sqrt{\langle v_n^2 \rangle}$
- If $v_2\{2\}/v_2[2] < 1$, it indicates presence of flow vector fluctuations
- How can we disentangle the two contributions and quantify each of them?

Separating flow angle and flow magnitude fluctuations

 New observable to measure flow angle fluctuations:

$$F(\Psi_n^a, \Psi_n) = \frac{\langle \langle \cos[n(\varphi_1^a + \varphi_2^a - \varphi_3 - \varphi_4)] \rangle \rangle}{\langle \langle \cos[n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)] \rangle \rangle}$$

$$= \frac{\langle v_n^2(p_T^a) \ v_n^2 \cos 2n[\Psi_n(p_T^a) - \Psi_n] \rangle}{\langle v_n^2(p_T^a) v_n^2 \rangle}$$

$$\approx \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n] \rangle$$

New observable to measure flow magnitude fluctuations

$$\frac{\langle\langle\cos n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)\rangle\rangle}{\langle\langle\cos n(\varphi_1^a - \varphi_3^a)\rangle\rangle\langle\langle\cos n(\varphi_2 - \varphi_4)\rangle\rangle} = \frac{\langle v_n^2(p_T^a) v_n^2\rangle}{\langle v_n^2(p_T^a)\rangle\langle v_n^2\rangle}$$

• p_{T} -integrated baseline: $\langle v_n^4 \rangle / \langle v_n^2 \rangle^2$

 $F(\Psi_n^a, \Psi_n) < 1$ indicates p_T -dependent flow angle fluctuations

Deviations from baseline indicate the presence of $p_{\rm T}$ -dependent flow magnitude fluctuations

Comparing with $v_n\{2\}/v_n[2]$

• Enable comparison with flow vector fluctuations from $v_n\{2\}/v_n[2]$

$$\sqrt{\frac{F(\Psi_n^a, \Psi_n) + 1}{2}} = \sqrt{\langle \cos^2 n[\Psi_n(p_T^a) - \Psi_n] \rangle}$$

$$\geq \langle \cos n[\Psi_n(p_{\rm T}^a) - \Psi_n] \rangle$$

- Provides upper limit on the flow angle fluctuations (lower limit is $v_n\{2\}/v_n[2]$)
- How can we probe 1st moment flow magnitude fluctuations?

$$F(v_n^a, v_n) \equiv \frac{v_n\{2\}/v_n[2]}{\sqrt{\frac{F(\Psi_n^a, \Psi_n) + 1}{2}}} \leq \frac{\langle v_n(p_{\mathrm{T}}^a)v_n \rangle}{\sqrt{\langle v_n^2(p_{\mathrm{T}}^a) \rangle} \sqrt{\langle v_n^2 \rangle}}$$

 Provides lower limit on flow magnitude fluctuations (upper limit is unity)

The ALICE experiment

- Dedicated heavy-ion experiment at the LHC
- Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02 \, \mathrm{TeV}$
- Data from 2015 Run 2 data taking period
- ITS and TPC detectors provide tracking information
- V0M for centrality estimation

p_{T} -dependent flow vector fluctuations: V_2

Preliminary model calculations Statistical errors are expected to decrease

- Deviations from unity of $v_2\{2\}/v_2[2]$ in central collisions $o p_{\mathrm{T}}$ -dependent V_2 flow vector fluctuations
- Deviations are largest at the edge of hydro p_{T} range
- High precision Run 2 measurements allow for improved constraints on future model comparisons

p_{T} -dependent flow vector fluctuations: V_3 and V_4

- $v_3\{2\}/v_3[2]$ and $v_4\{2\}/v_4[2]$ consistent with unity
- No indication of p_{T} -dependent V_3 or V_4 fluctuations
- Hydro models consistent with unity
- High precision Run 2 measurements allow for improved constraints on future model comparisons

Flow angle and magnitude fluctuations

Flow angle fluctuations

$$F(\Psi_2^a, \Psi_2) = \langle \cos 2n[\Psi_2(p_T^a) - \Psi_2] \rangle$$

- Deviation from unity $\rightarrow p_{\mathrm{T}}$ -dependent flow angle fluctuations
- $> 5\sigma$ significance in most centralities

Flow magnitude fluctuations $\langle v_n^2(p_{\rm T}^a)v_n^2\rangle/\langle v_n^2(p_{\rm T}^a)\rangle\langle v_n^2\rangle$

- Deviation from $\langle v_n^4 \rangle / \langle v_n^2 \rangle^2 \to p_{\rm T}$ -dependent flow magnitude fluctuations
- $\sim 5\sigma$ significance in most central collisions

Discovery of both flow angle and flow magnitude fluctuations in most central collisions!

$v_n\{2\}/v_n[2]$, flow angle and flow magnitude

- Only possible to extract limits of flow angle and flow magnitude fluctuations in 2-particle correlation
- Effects most significant in central collisions

Limits on fluctuations from 2-pc

Flow angle upper limit:

$$\sqrt{\frac{F(\Psi_2^a, \Psi_2) + 1}{2}} \ge \langle \cos n[\Psi_2(p_{\mathrm{T}}^a) - \Psi_2] \rangle$$

Flow angle lower limit:

$$v_n\{2\}/v_n[2]$$

Flow magnitude upper limit:

Unity

Flow magnitude lower limit:

$$F(v_2^a, v_2) \le \frac{\langle v_n(p_{\mathrm{T}}^a) v_n \rangle}{\sqrt{\langle v_n^2(p_{\mathrm{T}}^a) \rangle} \sqrt{\langle v_n^2 \rangle}}$$

$v_n\{2\}/v_n[2]\text{, flow angle and flow magnitude}$

- Significant flow angle and flow magnitude fluctuations observed in central collisions
- Flow angle fluctuations significant in most centralities
- Flow magnitude fluctuations only significant in most central collisions

New flow picture

- Flow angle fluctuations not included in many theoretical models for high $p_{\rm T}$ calculations
- Future flow modelling should include flow angle fluctuations for more accurate extraction of QGP properties

Flow with event-shape-engineering

Correlations of flow

- Event-shape-engineering (ESE) allows for selection of initial geometry
- Select high (low) ϵ_n resulting in higher (lower) values of flow
- Probe correlations between different order harmonics with ESE
- Positive correlation between v_2 and v_4

See back-up for more information

Flow with event-shape-engineering

Linear and non-linear flow modes

Extract linear and non-linear flow modes with

fit
$$v_4 = \sqrt{c_0^2 + (c_1 v_2^2)^2}$$

• So how does $v_4^{\rm L}$ and $v_4^{\rm NL}$ couple to q_2 and to each other?

• Non-linear increase in $v_4^{\rm NL}$ while $v_4^{\rm L}$ is unaffected $\to v_4^{\rm NL}$ and $v_4^{\rm L}$ must be entirely uncorrelated

See back-up for more information

Summary

- New precision measurements of $v_n\{2\}/v_n[2]$ show p_{T} -dependent V_2 fluctuations
 - No indication of V_3 or V_4 fluctuations
- Novel observables allow for disentanglement of flow angle and flow magnitude fluctuations
 - First time measured separately. Discovery of both effects in most central collisions
 - These discoveries give a new flow picture! Can quantify both the flow angle and flow magnitude fluctuations and give limits on their contribution to the 2-particle correlation flow vector fluctuations
 - <u>Crucial examinations on the theoretical models</u>, it will significantly improve the overall understanding of the initial fluctuations and also the dynamical expansion of the QGP
- Event-shape-engineering provides a useful tool to study correlation between different order flow harmonics and to extract linear and non-linear flow modes of v_4

Thank you for your attention!

Event-shape-engineering

- Event-shape-engineering (ESE) allows for selection of initial geometry
- Select high (low) ϵ_n resulting in higher (lower) values of flow

$$q_n = \frac{|Q_n|}{\sqrt{M}}$$

• The reduced Q-vector q_n can be constructed in different detectors to avoid self-correlations

Select $q_n \rightarrow$ change eccentricity

Correlations of flow

- Correlations between different order harmonics with ESE
- Negative correlation between v_2 and v_3 , and positive correlation between v_2 and v_4

Linear and non-linear flow modes

• Extract linear and non-linear contributions from v_2 - v_4 correlation with fit:

$$v_4 = \sqrt{c_0^2 + (c_1 v_2^2)^2}$$

- Good agreement between fit and multi-particle correlation
- So how does $v_4^{\rm L}$ and $v_4^{\rm NL}$ couple to q_2 and to each other?

Linear and non-linear flow modes

- $v_4^{\rm L}$ and $v_4^{\rm NL}$ as function of q_2 percentiles
- Non-linear increase in $v_4^{\rm NL}$ while $v_4^{\rm L}$ is unaffected $\to v_4^{\rm NL}$ and $v_4^{\rm L}$ must be entirely uncorrelated
- This conclusion was reached in a previous study, albeit with stronger assumptions

Phys.Lett.B 773 (2017) 68-80

Particle selection

 Particles are selected from different subevents to separate flow angle and flow magnitude fluctuations

Flow angle fluctuations:

$$F(\Psi_n^a, \Psi_n) = \frac{\langle\langle\cos[n(\varphi_1^a + \varphi_2^a - \varphi_3 - \varphi_4)]\rangle\rangle}{\langle\langle\cos[n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)]\rangle\rangle}$$

Flow magnitude fluctuations:

$$\frac{\langle v_n^2(p_T^a) \ v_n^2 \rangle}{\langle v_n^2(p_T^a) \rangle \langle v_n^2 \rangle} = \frac{\langle \langle \cos n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4) \rangle \rangle}{\langle \langle \cos n(\varphi_1^a - \varphi_3^a) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_4) \rangle \rangle}$$

POI from same subevent:

POI from different subevents:

