

First measurements of genuine three-harmonic correlations in Pb—Pb collisions with ALICE

Cindy Mordasini

for the ALICE Collaboration

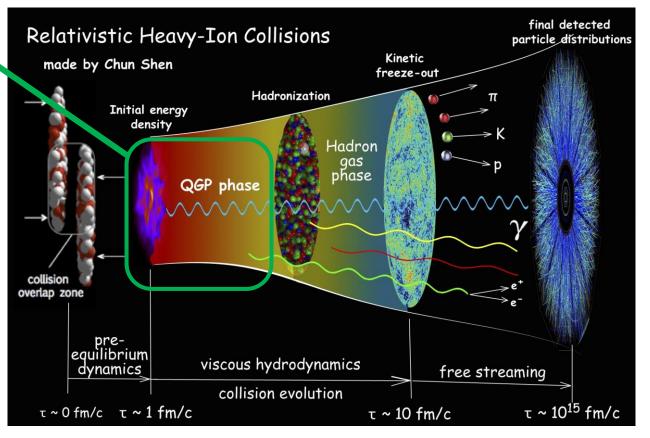
Technische Universität München

10-15.01.2021

How do we study QGP?

What we want

- Characterised by
 - initial state, initial geometry
 - collective dynamics, transport properties



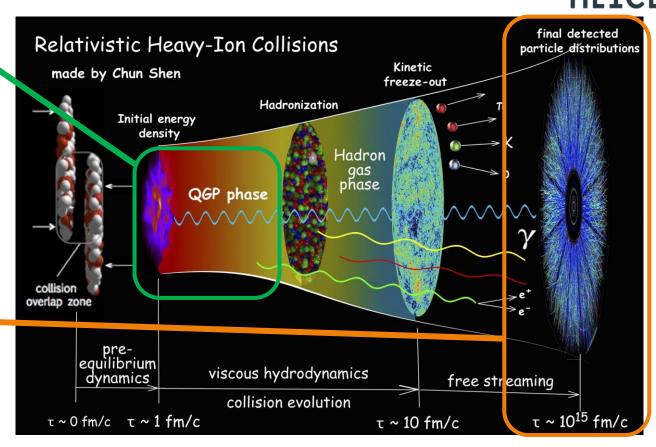
How do we study QGP?

What we want

- Characterised by
 - initial state, initial geometry
 - collective dynamics, transport properties

What we measure

- Final state distributions
 - p_{T} , η , φ , ...
 - identified particles



How do we study QGP?

final detected

particle distributions

- What we want
- Characterised by
 - initial state, initial geometry
 - collective dynamics, transport properties

How can we link them?

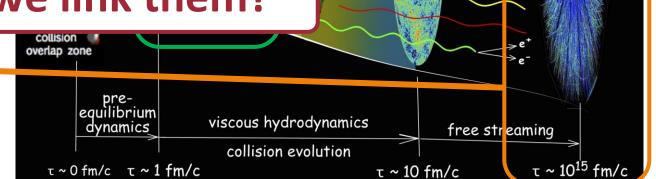
Relativistic Heavy-Ion Collisions

QGP phase

Initial energy density

made by Chun Shen

- What we measure
- Final state distributions
 - p_{T} , η , φ , ...
 - identified particles



Hadronization

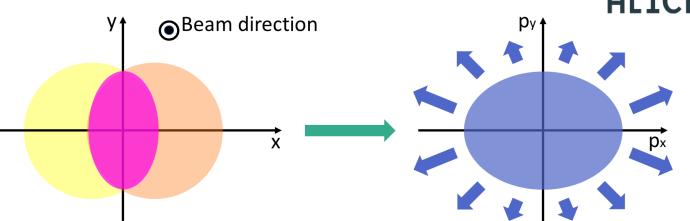
Kinetic

freeze-out

Hadron gas phase

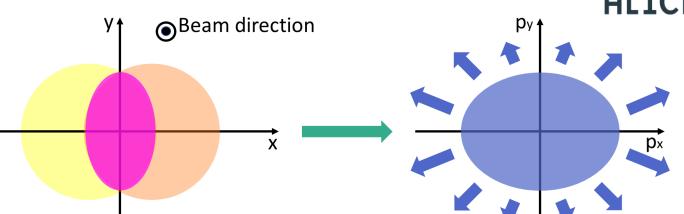
Anisotropic flow phenomenon

Anisotropic flow: transfer of the initial anisotropy into anisotropy in momentum space via the thermalized medium



Anisotropic flow phenomenon

Anisotropic flow: transfer of the initial anisotropy into anisotropy in momentum space via the thermalized medium



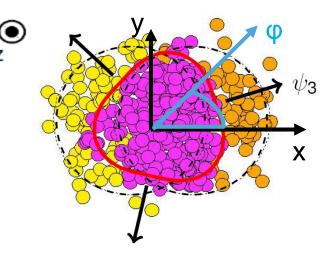
Distribution described by Fourier series^[1]:

$$f(\varphi) = \frac{1}{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} \left[v_n \cos \left(n(\varphi - \Psi_n) \right) \right] \right]$$

 $_{\circ}$ Analytic relation between v_n , Ψ_n and $\varphi^{\text{[2]}}$:

$$\langle \cos[n_1 \varphi_1 + \dots + n_k \varphi_k] \rangle = v_{n_1} \dots v_{n_k} \cos[n_1 \Psi_{n_1} + \dots + n_k \Psi_{n_k}]$$

[2] R.S. Bhalerao, M. Luzum and J.-Y. Ollitrault, PRC **84**, 034910 (2011)



M. Luzum, J. Phys. G 38, 124026 (2011)

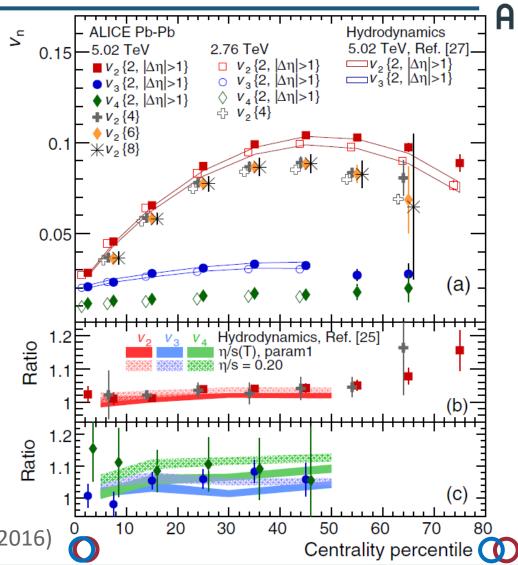
What can we measure?

 $\circ v_n$ with k-particle cumulants of φ :

$$v_n \{2\}^2 = \langle v_n^2 \rangle$$

$$-v_n \{4\}^4 = \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2$$

 \rightarrow Dominated by $\langle \eta/s \rangle$



ALICE Collaboration, PRL 116, 132302 (2016)

What can we measure?

 $\circ v_n$ with k-particle cumulants of φ :

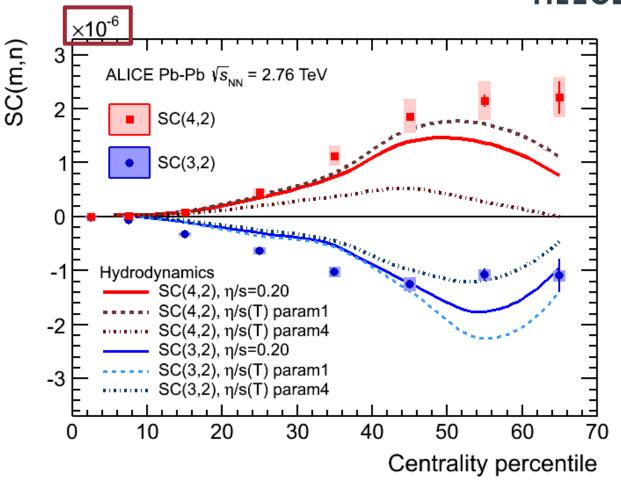
$$v_n \{2\}^2 = \langle v_n^2 \rangle$$

$$-v_n \{4\}^4 = \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2$$

- \rightarrow Dominated by $\langle \eta/s \rangle$
- Symmetric Cumulants: generalisation to two different harmonics m and n:

$$SC(m,n) = \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle$$

 \rightarrow Sensitive to $\eta/s(T)$



ALICE Collaboration, PRL 117, 182301 (2016)

What can we measure?

 $\circ v_n$ with k-particle cumulants of φ :

$$v_n \{2\}^2 = \langle v_n^2 \rangle$$

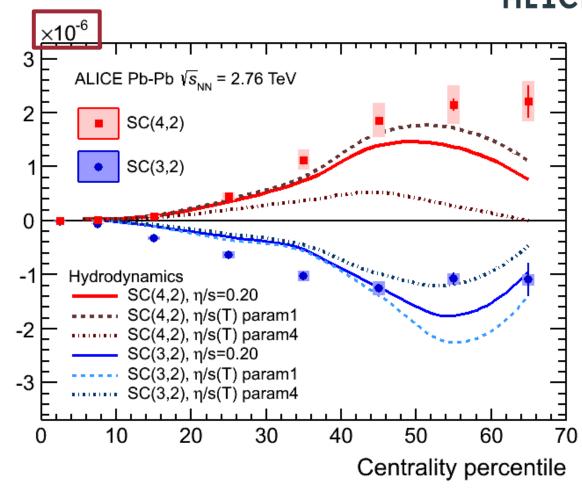
$$-v_n \{4\}^4 = \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2$$

SC(m,n)

- \rightarrow Dominated by $\langle \eta/s \rangle$
- Symmetric Cumulants: generalisation to two different harmonics m and n:

$$SC(m,n) = \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle$$

- \rightarrow Sensitive to $\eta/s(T)$
- → New set of constraints on the system!



ALICE Collaboration, PRL 117, 182301 (2016)

Can we go further?

- Why do we need to go further?
 - new information on the initial and final state correlations
 - new and independent constraints on the models

Can we go further?

- Why do we need to go further?
 - new information on the initial and final state correlations
 - new and independent constraints on the models
- → Measure the genuine correlations between three and more flow amplitudes

Can we go further?

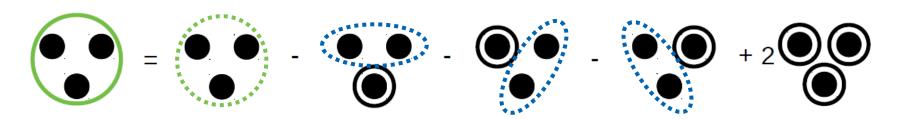
- Why do we need to go further?
 - new information on the initial and final state correlations
 - new and independent constraints on the models
- → Measure the genuine correlations between three and more flow amplitudes

- O How can we achieve this?
 - use the mathematical formalism of higher order cumulants
 - ensure the new observables are cumulants of the flow amplitudes

Higher order Symmetric Cumulants

- New theoretical framework^[1] developed for any number of flow amplitudes
- Focus of this analysis: 3-harmonic Symmetric Cumulants

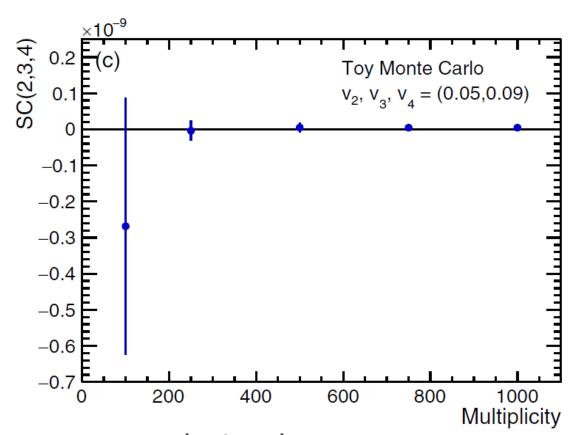
$$SC(k, l, m) = \langle v_k^2 v_l^2 v_m^2 \rangle - \langle v_k^2 v_l^2 \rangle \langle v_m^2 \rangle$$
$$- \langle v_k^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_l^2 v_m^2 \rangle \langle v_k^2 \rangle + 2 \langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle$$

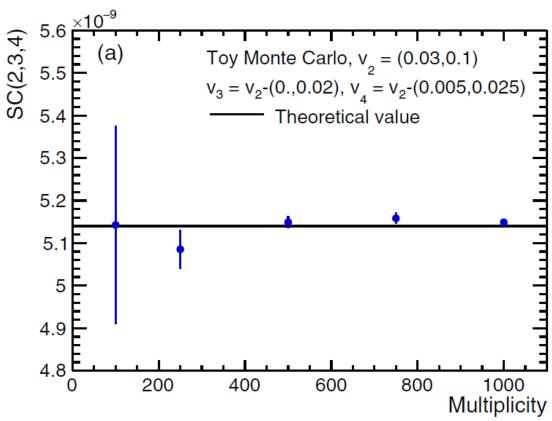


$$NSC(k, l, m) = \frac{SC(k, l, m)}{\langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle}$$

[1] CM, A. Bilandzic, D. Karakoç, S.F. Taghavi, PRC 102, 024907 (2020)

Validation with toy Monte Carlo





• Genuine correlations between all amplitudes $\rightarrow SC(k, l, m) \neq 0$

CM, A. Bilandzic, D. Karakoç, S.F. Taghavi, PRC 102, 024907 (2020)

Analysis of ALICE data

- $_{\odot}$ Run 1 (2010) Pb-Pb collisions at $\sqrt{s_{
 m NN}}$ = 2.76 TeV
 - 8.2·10⁶ events for the 0–50% centrality range

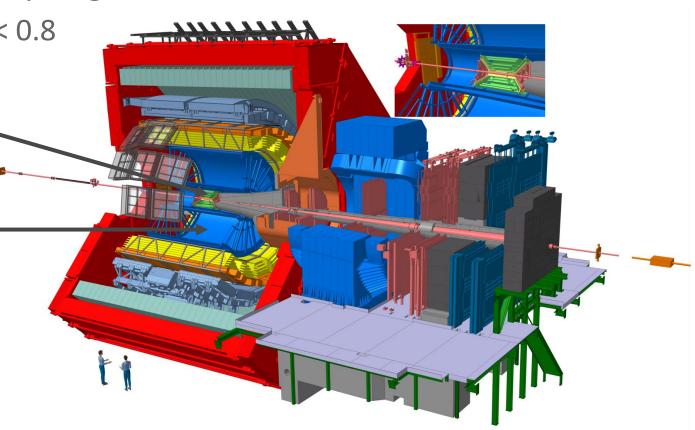
• tracks in 0.2 < $p_{\rm T}$ < 5 GeV/c and $|\eta|$ < 0.8

Inner Tracking System

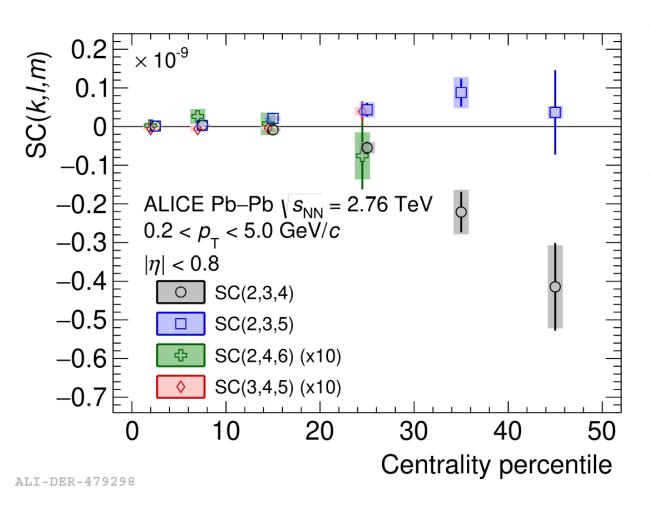
- centrality estimations
- vertex determination

Time Projection Chamber

- reconstruction of charged particles
- particle identification



SC(k, l, m) in ALICE



- First experimental observations of genuine correlations between three flow amplitudes
- Dependency of the magnitude on the order of the amplitudes

ALICE Collaboration, arXiv:2101.02579 (2021)

Signature of SC(k, l, m)

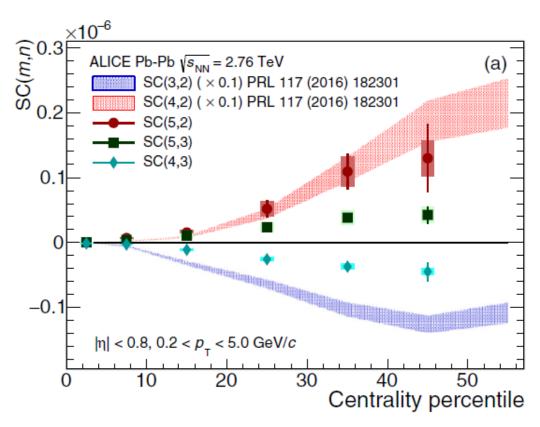
$$SC(k, l, m) = \langle \left(v_k^2 - \langle v_k^2 \rangle\right) \left(v_l^2 - \langle v_l^2 \rangle\right) \left(v_m^2 - \langle v_m^2 \rangle\right) \rangle$$

- \circ If $SC(k, l, m) > 0 \rightarrow (+,+,+)$ and (+,-,-)
- o If $SC(k, l, m) < 0 \rightarrow (+,+,-)$ and (-,-,-)

Signature of SC(k, l, m)

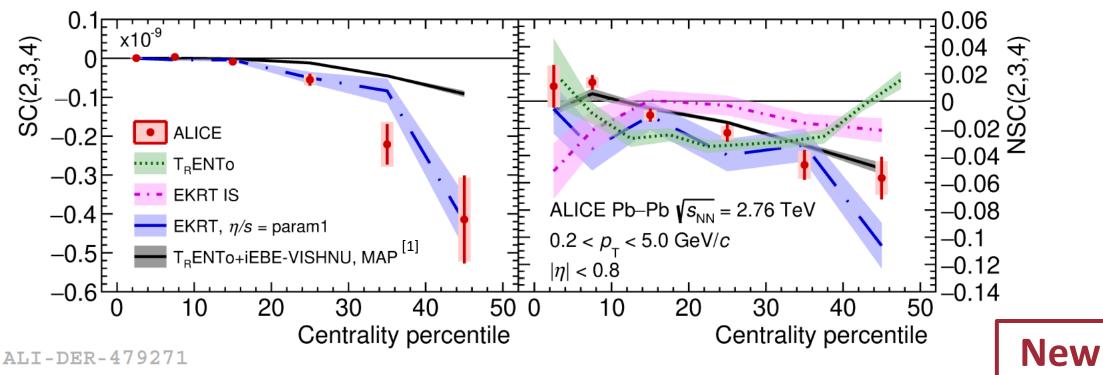
$$SC(k, l, m) = \langle \left(v_k^2 - \langle v_k^2 \rangle\right) \left(v_l^2 - \langle v_l^2 \rangle\right) \left(v_m^2 - \langle v_m^2 \rangle\right) \rangle$$

- o If $SC(k, l, m) > 0 \rightarrow (+,+,+)$ and (+,-,-)
- o If $SC(k, l, m) < 0 \rightarrow (+,+,-)$ and (-,-,-)
- Example:
 - $SC(3,2) < 0 \rightarrow (+,-)$ (+,-,-) or (+,+,-)?
 - $SC(4,2) > 0 \rightarrow (+,+) \longrightarrow SC(2,3,4) > 0$
 - $SC(4,3) < 0 \rightarrow (+,-)$ or SC(2,3,4) < 0?
 - SC(2,3,4) < 0 observed in data
- \rightarrow SC(k, l, m) can extract new information



ALICE Collaboration, PRC 97, 024906 (2018)

SC(2,3,4) and NSC(2,3,4)

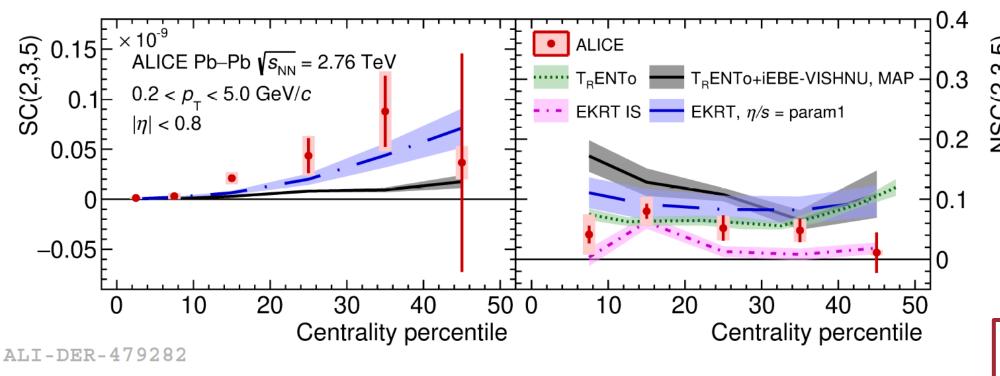


- \circ Sensitivity of SC(2,3,4) to the model used for prediction
- Development of genuine correlations during hydrodynamical evolution

[1] J. E. Bernhard, J. S. Moreland and S. A. Bass, Nature Phys. 15, 11 (2019)

ALICE Collaboration, arXiv:2101.02579 (2021)

SC(2,3,5) and NSC(2,3,5)



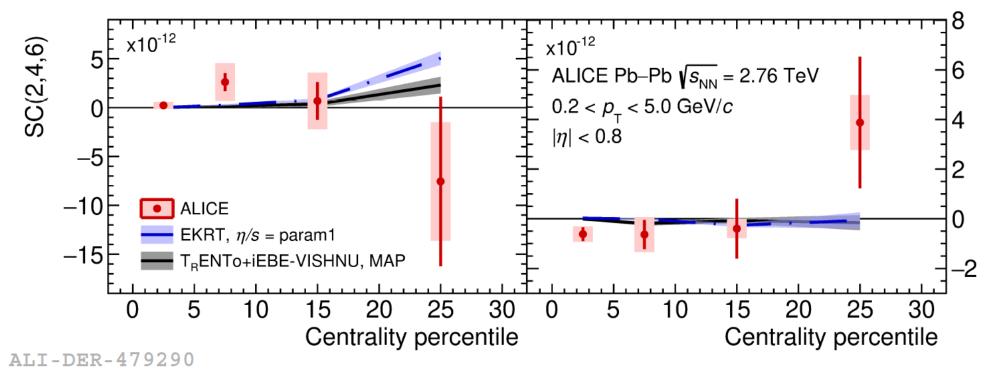
- Hint at the development of correlations during hydrodynamical evolution
- $_{\circ}$ Non-linear response to v_{5} from v_{2} and v_{3}

ALICE Collaboration, arXiv:2101.02579 (2021)

New

SC(2,4,6) and SC(3,4,5)

SC(3,4,5)



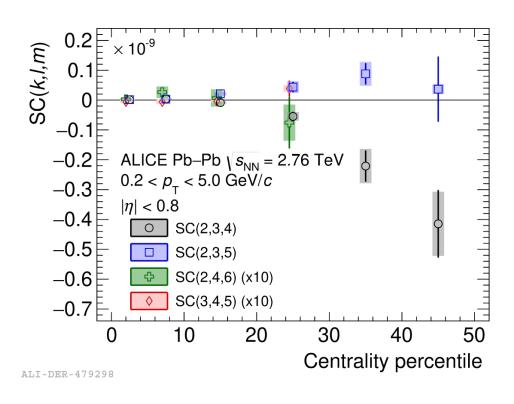
- Good agreement between the models
- \circ SC(2,4,6) and SC(3,4,5) \sim 0 \rightarrow No correlations in the final state

ALICE Collaboration, arXiv:2101.02579 (2021)

New

In a nutshell

- $_{\odot}$ First measurements of genuine three-harmonic correlations in Pb—Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV
- → Development of genuine correlations during the hydrodynamical evolution
- → Whole new set of constraints on the
 - initial conditions and transport properties of QGP
 - parameterizations of the hydro models



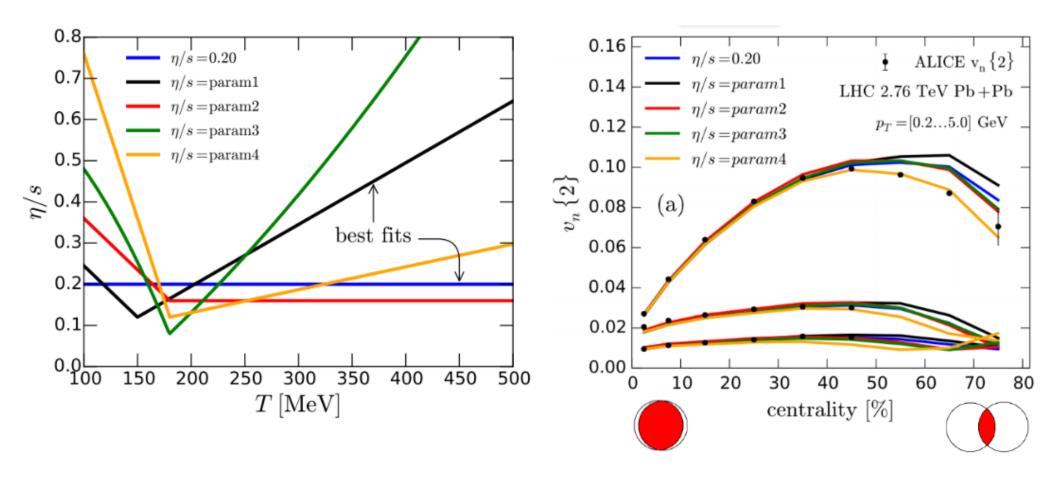
Thank you for your attention

Backup Slides

Experimental Expression for SC(k, l, m)


```
SC(k, l, m) = \langle \langle \cos[k\varphi_1 + l\varphi_2 + m\varphi_3 - k\varphi_4 - l\varphi_5 - m\varphi_6] \rangle \rangle
- \langle \langle \cos[k\varphi_1 + l\varphi_2 - k\varphi_3 - l\varphi_4] \rangle \rangle \langle \langle \cos[m(\varphi_5 - \varphi_6)] \rangle \rangle
- \langle \langle \cos[k\varphi_1 + m\varphi_2 - k\varphi_5 - m\varphi_6] \rangle \rangle \langle \langle \cos[l(\varphi_3 - \varphi_4)] \rangle \rangle
- \langle \langle \cos[l\varphi_3 + m\varphi_4 - l\varphi_5 - m\varphi_6] \rangle \rangle \langle \langle \cos[k(\varphi_1 - \varphi_2)] \rangle \rangle
+ 2 \langle \langle \cos[k(\varphi_1 - \varphi_2)] \rangle \rangle \langle \langle \cos[l(\varphi_3 - \varphi_4)] \rangle \rangle \langle \langle \cos[m(\varphi_5 - \varphi_6)] \rangle \rangle
```

Parametrisations for η/s



H. Niemi, K. J. Eskola, R. Paatelainen, Phys. Rev. C 93, 024907 (2016)

Individual Flow Harmonics

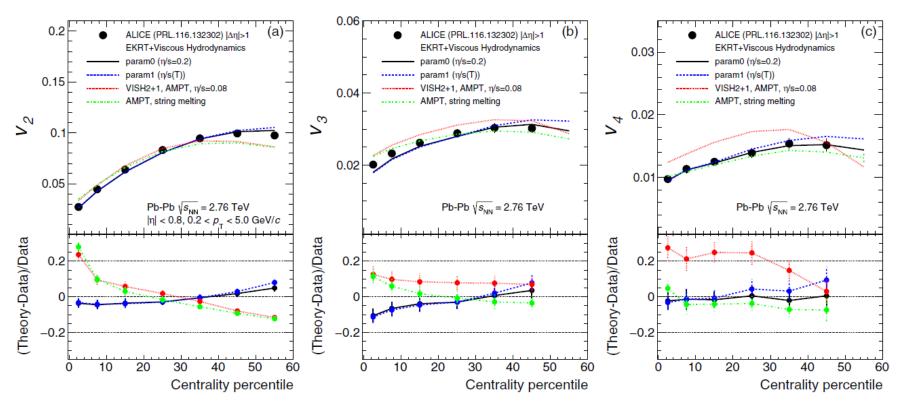


FIG. 13. The individual flow harmonics v_n for n = 2-4 in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [11]. Results are compared with selected ALICE Collaborations from three different types of models which are best in describing v_n coefficients.

Toy Monte Carlo

$$\begin{split} \left\langle v_1^2 v_2^2 v_3^2 \right\rangle_{c,\text{OLD}} &= \left. \left\langle v_1^2 v_2^2 v_3^2 \right\rangle - \left\langle v_1^2 v_2^2 \right\rangle \left\langle v_3^2 \right\rangle - \left\langle v_1^2 v_3^2 \right\rangle \left\langle v_2^2 \right\rangle - \left\langle v_2^2 v_3^2 \right\rangle \left\langle v_1^2 \right\rangle \\ &- \left. \left\langle v_1 v_2 v_3 \cos(3\Psi_3 - 2\Psi_2 - \Psi_1) \right\rangle^2 - \left\langle v_1 v_2 v_3 \sin(3\Psi_3 - 2\Psi_2 - \Psi_1) \right\rangle^2 \\ &+ \left. 2 \left\langle v_1^2 \right\rangle \left\langle v_2^2 \right\rangle \left\langle v_3^2 \right\rangle \,, \end{split}$$

$$\begin{array}{lcl} \left\langle v_1^2 v_2^2 v_3^2 \right\rangle_{c,\mathrm{NEW}} & = & \left\langle v_1^2 v_2^2 v_3^2 \right\rangle - \left\langle v_1^2 v_2^2 \right\rangle \left\langle v_3^2 \right\rangle - \left\langle v_1^2 v_3^2 \right\rangle \left\langle v_2^2 \right\rangle - \left\langle v_2^2 v_3^2 \right\rangle \left\langle v_1^2 \right\rangle \\ & + & 2 \left\langle v_1^2 \right\rangle \left\langle v_2^2 \right\rangle \left\langle v_3^2 \right\rangle \,. \end{array}$$

- Old: method using azimuthal angles, New: approach used for this analysis
- Toy Monte Carlo setup as follows:
 - v_1, v_2, v_3 sampled randomly for each event in (0.03, 0.1), (0.04, 0.1), (0.05, 0.1) respectively
 - Ψ_1 , Ψ_2 independently sampled for each event in (0, 2π) and $\Psi_3 = \frac{1}{3}(\frac{\pi}{4} + 2\Psi_2 + \Psi_1)$

Toy Monte Carlo

