

Searching for the chiral magnetic effect with the sliding dumbbell method in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE

Anjali Sharma (for the ALICE collaboration) Panjab University, Chandigarh (India)

OUTLINE

Physics Motivation

Electric field induced by the strong magnetic field created by energetic spectator protons, causes charge separation along the system's angular momentum direction.

An event-by-event study of "localized" charge separation is one of the observable to investigate the Chiral Magnetic Effect (CME).

Voloshin(**PRC** 70,057901(2004)) described this charge separation in terms of azimuthal distribution as:

$$\frac{dN_{\pm}}{d\phi} \sim (1 + 2a_{\pm}sin(\phi - \Psi_{RP}))$$

where parameter $a_{-} = -a_{+}$ which relates to asymmetry across the plane as [D. Kharzeev, Phys. Lett. B 633:260-264, 2006]:

$$A^{+} = \frac{(N_{+}^{up} - N_{+}^{down})}{(N_{+}^{up} + N_{+}^{down})} \propto a_{+}$$

3 - particle correlator used to study CME is

 $\gamma = \langle cos(\phi_a + \phi_b - 2\Psi_{RP}) \rangle \approx (v_{1,a}v_{1,b} - a_a a_b) = \langle cos(\phi_a + \phi_b - 2\phi_c) \rangle / v_{2,c}$

here, φ_a , φ_b , φ_c are azimuthal angles of particle a, b and c ; ψ_{RP} is reaction plane angle, $v_{1,a(b)}$ is direct flow and $v_{2,c}$ is elliptic flow of third particle "c". For symmetric rapidity, direct flow, $v_{1,a} = v_{1,b} \sim 0$, so $\gamma \approx |a_a \cdot a_b|$

Initial Stages, 2021

Sliding Dumbbell Method (SDM)

New technique, Sliding Dumbbell Method, is developed to search <u>event-by-event</u> back-to-back charge separation and to pinpoint the events which show higher back-to-back charge separation and are CME-like events.

Aim is to get CME-like enriched sample for a given collision centrality.

Azimuthal plane in each event is scanned by sliding dumbbell of $\Delta \varphi = 90^{\circ}$ in steps of $\delta \varphi = 1^{\circ}$ to obtain maximum values of Db_{\pm} in each event i.e. Db_{\pm}^{max}

$$Db_{\pm} = \begin{array}{ll} \mbox{positive charge fraction} & \mbox{negative charge fraction} \\ \mbox{on one side of the dumbbell} + & \mbox{on other side of the} \\ \mbox{i.e. "a" side} & \mbox{dumbbell i.e."b" side} \end{array}$$

Particles in the shaded area represent the particles inside the dumbbell.

 γ is studied for whole event as well as for the particles inside the dumbbell only just to magnify the CME-like signal.

Fractional dumbbell charge separation is defined, f_{DbCS} , as : $f_{DbCS} = Db_{\pm}^{max} - 1$

Analysis Strategy

Step 1.

 Db_{\pm}^{max} distributions with the asymmetry cut, $|Db_{asy}| < 0.25$ are measured to get CME like events. ($Pos_{ex}^{a} - Neg_{ex}^{b}$)

$$Db_{asy} = \frac{(Pos_{ex}^a - Neg_{ex}^b)}{(Pos_{ex}^a + Neg_{ex}^b)}$$

Positive charged particle excess on "a" side of the dumbbell

Negative charged particle excess on "b" side of the dumbbell

 $Pos_{ex}^{a} = N_{+}^{a} - N_{-}^{a}$ $Neg_{ex}^{b} = N_{-}^{b} - N_{+}^{b}$

Step 2.

 Db_{\pm}^{max} distributions are obtained for different collision centralities and divided into 10 percentile bins highest(lowest) corresponding to 0-10% (90-100%).

Step 3.

Calculated γ for all Db_{\pm}^{max} bins for SS and OS charge pairs as a function of collision centrality.

3p correlators and $v_{2,c}$ are calculated using Q-Cumulant method Phys. Rev. C 83 044913(2011)

Step 4.

For background estimation, charge reshuffle where charges of particles are reshuffled randomly keeping θ , ϕ same and correlated background from original event itself corresponding to charge reshuffle, are used.

Anjali Sharma for the ALICE Collaboration

Data Set

- Pb-Pb collisions @ 2.76 TeV
- ~ I 4M events analysed

Event Selection

- Minimum bias events
- Centrality by signal in V0 detector

Track Selection

Transverse momentum: 0.2-5.0 GeV/c
-0.8< η < 0.8

Anjali Sharma for the ALICE Collaboration

Anjali Sharma for the ALICE Collaboration

Initial Stages, 2021

 $\Delta \gamma = \gamma_{OppSign} - \gamma_{SameSign}$

For Large correlation is observed in higher Db_{\pm}^{max} bins where the sample of events with large charge separation has been extracted. Charge reshuffle shows similar dependences but with smaller magnitude while correlated background remains almost constant.

Summary

- ***** It is observed that for top Db_{\pm}^{max} bins $|\gamma_{OS}| \sim |\gamma_{SS}|$ as required for CME-like sample.
- ***** Using SDM, we are able to extract the CME like events corresponding to top (10-20%) Db_{\pm}^{max} for a given centrality. The CME-like signal is significantly magnified (~40-150 times) if three-particle correlator is computed for particles inside the dumbbell only.

Thanks !

Back up

Charge Reshuffle:

For background estimation, charges of particles are reshuffled randomly keeping (θ, ϕ) same to obtain charge reshuffle background leading to back-to-back charge separation statistically. This data set is treated in the same way as real data set.

Correlated background:

Charge reshuffling kills not only the CME correlations but also correlations amongst produced particles in a collision. So we have taken the correlated background from original event itself corresponding to charge reshuffle. However, it should be noted that here Db_{\pm}^{max} bins in charge reshuffle is different from Db_{\pm}^{max} original event as will be shown in scatter plot of Db_{\pm}^{max} charge reshuffle vs Db_{\pm}^{max} data.

$$\gamma_{bkg.} = \gamma_{ch.re} + \gamma_{correlated}$$
(original event)

Left plot: Scatter plot between Db_{\pm}^{max} charge reshuffle versus data, and vertical line is drawn corresponding to top 10% Db_{\pm}^{max} bin of charge reshuffle. From this plot it is clear that for top Db_{\pm}^{max} bin of charge reshuffle, data Db_{\pm}^{max} can take any value.

Solution Right Plot: $|\gamma_{SameSign}(Data)|$ seems to vary approximately linearly with $\langle f_{DbCS}f_{DbCS} \rangle$.