Search for the Chiral Magnetic Wave (CMW) with ALICE at the LHC

The VIth International Conference on the INITIAL STAGES OF HIGH-ENERGY NUCLEAR COLLISIONS

Outline:

- Motivation
- Observable
- Analysis details
- Results
- Summary and outlook

Prottay Das (for the ALICE Collaboration) National Institute Of Science Education and Research HBNI

Motivation

	Spin: –		Momentum:	
в	u,	d _R		
	UR	d	U _R d _l	
	1		2	3

✓ Chiral Magnetic Effect (CME):
$$j_v = \frac{N_c e}{2\pi^2} \mu_A B$$

✓ Chiral Separation Effect (CSE): $j_A = \frac{N_c e}{2 \pi^2} \mu_v B$

Heavy-ion collisions

- Chiral symmetry restoration
- ✓ QCD vacuum transitions
- Extremely strong magnetic field (~10¹⁹T)

All the necessary conditions are possible to be achieved in Heavy-ion collisions

Phys.Rev.Lett. 81 (1998) 512-515

- Chiral Magnetic Wave (CMW): CME + CSE
- Induces parity odd domains

NΤ

Observables

- Possible background: Local charge conservation (LCC)
- Probe the background: Similar measurement with v₃

Observables

- Possible background: Local charge conservation (LCC)
- Probe the background: Similar measurement with v₃

Observables

Analysis details

No. of events	~60x10 ⁶	
Kinematic range	$ \eta < 0.8$ 0.2< $p_{\tau} < 0.5 \text{ GeV}/c$ (pions) 0.2< $p_{\tau} < 1.0 \text{ GeV}/c$ (hadrons)	
Non flow suppression	$ \Delta\eta > 0.4$ between subevents	
Charge asymmetry (A _{ch})	0.2< <i>p</i> _T <10 GeV/ <i>c</i> , η <0.8, 10 uniform bins (-0.1 to 0.1)	

v₂ vs charge asymmetry

Initial Stages, 2021

Centrality dependence of r^{Norm}

✓ $r^{Norm}_{\Delta v_2}$ is compatible with $r^{Norm}_{\Delta v_3}$

Summary and outlook

- Measurement of CMW studies are presented for pions and charged hadrons in Pb-Pb collisions at 5.02 TeV with ALICE.
- ✓ $r^{norm}_{\Delta v3}$ has large uncertainties
- \checkmark r^{norm} is compatible with r^{Norm} Δv_3
- ✓ Measurement to be done with high statistics (2018 datasets) in Pb-Pb collisions.

BACKUP

Comparison of $r^{Norm}_{\Delta v_n}$ between hadrons, pions

Comparison of $r^{Norm}_{\Delta v_2}$ in ALICE, STAR and CMS

Comparison of $r^{Norm}_{\Delta v_3}$ in ALICE, STAR and CMS

✓ No observed discrepancies in r^{Norm} between ALICE, STAR and CMS, but uncertainties are large

Observable

✓ Charge dependent elliptic flow
$$v_2^{h^{\pm}} = v_2 \mp r \frac{A_{ch}}{2}$$
 with $A_{ch} = \frac{N^+ - N^-}{N^+ + N^-}$

- $\checkmark \text{ CMW observable: Normalised Slope, } r_{\Delta v_2}^{Norm} = \frac{u(\overline{\langle v_2 \rangle})}{dA_{ch}}$ where $\Delta v_2 = v_2^{h^2} - v_2^{h^2}$, $\langle v_2 \rangle = \frac{v_2^{h^2} + v_2^{h^2}}{2}$
- Possible background: Local charge conservation
- Minimise the background: Measurement at low $p_{\rm T}$
- Probe the background: Similar measurement with v₃