The Measurement of jet-particle v_2 in p-Pb collisions at 5.02 TeV with ALICE at the LHC

Siyu Tang for the ALICE Collaboration

Institute of Particle Physics, CCNU, Wuhan, China
Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand, France
The azimuthal anisotropy of high-p_T hadrons and associated jets is believed to originate from path-length dependent parton energy loss in the QGP formed in A-A collisions. However, in small systems, a non-zero v_2 is observed at high p_T, for both minimum bias and jet-triggered events. But, no jet quenching effect is observed from the measurement of R_{pPb} and hadron-jet correlations in small systems.
In this presentation, the v_2 of particles produced in jets is measured at low p_T in order to provide further information on the origin of such collectivity.

- The azimuthal anisotropy of high-p_T hadrons and associated jets is believed to originate from path-length dependent parton energy loss in the QGP formed in A-A collisions.
- However, in small systems, a non-zero v_2 is observed at high p_T, for both minimum bias and jet-triggered events.
- But, no jet quenching effect is observed from the measurement of R_{pPb} and hadron-jet correlations in small systems.
ALICE Experiment

• Forward Multiplicity Detector (FMD)
 • FMD3: -3.4<\eta<-1.7
 • FMD1&2: 1.7<\eta<5.1
• V0
 • Trigger and centrality
 • V0C: -3.7<\eta<-1.7, V0A: 2.8<\eta<5.1

Time Projection Chamber (TPC)
• Charged Particle Tracking
• |\eta| < 0.9

p-Pb 5.02 TeV (2016)
Minimum Bias Triggered Events ≈ 500M
Calculation of Correlation

\[
Y(\Delta \eta, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{assoc}}}{d\Delta \eta d\Delta \varphi} = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)}
\]

- The same sign charged particles measured in TPC acceptance (-0.8 < \eta < 0.8) are chosen as the trigger and associated particles, to construct 2-particle correlation
- Near-side jet peak is observed at \((\Delta \eta \sim 0, \Delta \varphi \sim 0)\)
Calculation of v_2

ALICE Preliminary

p-Pb $\sqrt{s_{NN}} = 5.02$ TeV

$2.0 < p_T^{\text{trig}} (\text{GeV}/c) < 3.0$

$1.0 < p_T^{\text{assoc}} (\text{GeV}/c) < 5.0$

TPC-TPC Correlation

V0A: 0-10%

ALI-PREL-366946
Calculation of v_2

- In each $(\Delta \eta, \Delta \phi)$ region of TPC-TPC pairs, the v_2 of trigger TPC tracks can be obtained with long-range TPC-FMD correlation.
- Non-flow contribution is suppressed by subtraction of low-multiplicity events.
- Factorization: $V_2^{\{2PC, \text{sub}\}} = v_2^{\{\text{TPC}\}} v_2^{\{\text{FMD}\}}$
Calculation of v_2

- In each ($\Delta \eta, \Delta \phi$) region of TPC-TPC pairs, the v_2 of trigger TPC tracks can be obtained with long-range TPC-FMD correlation
- Nonflow contribution is suppressed by subtraction of low-multiplicity events
- Factorization: $V_2\{2PC,\text{sub}\} = v_2\{\text{TPC}\} v_2\{\text{FMD}\}$
Extraction of Jet ν_2}

- **ALICE Preliminary**
- **p-Pb $\sqrt{s_{NN}} = 5.02$ TeV**
- **TPC-TPC Correlation**
- **V0A: 0-10%**

2.0 < p_T^{ring}(GeV/c) < 3.0

1.0 < p_T^{assoc}(GeV/c) < 5.0

Extract Jet signal and background

Extract Jet ν_2
Extraction of Jet v_2

ALICE Preliminary

- Double gaussian function is introduced to fit the jet signal, the sum of harmonics is used to fit background.
Extraction of Jet v_2

- Double gaussian function is introduced to fit the jet signal, the sum of harmonics is used to fit background.
- Jet signal and background are extracted separately, to calculate S/B.
Extraction of Jet v_2

- Jet signal and background are extracted separately, to calculate S/B

- The S/B obtained in TPC-TPC correlation is used as the weight to extract the v_2 of jet particles, in each p_T interval

$$v_2(\Delta \varphi, \Delta \eta) = \frac{S}{S+B} \times v_2(\text{Jet}) + \frac{B}{S+B} \times v_2(\text{Background})$$

Sum of 1st->5th harmonics
Results

- The positive v_2 of particles in jets is observed in p-Pb collisions.
- The jet-particle v_2 is significantly lower than inclusive v_2 of all charged particles.
- Consistent v_2 is observed with different associated-particle p_T selection within uncertainties.
Results

- Observed v_2 of jet particles in $0.5 < p_T < 5$ GeV/c
- suppressed stronger compared to low and intermediate-$p_T v_2$ of jet triggered events in p-Pb collisions

 \Rightarrow This measurement has large separating power of v_2 from hard and soft components
- comparable to high-$p_T v_2$ in p-Pb and Pb-Pb collisions

 \Rightarrow Positive v_2 of jet particles observed in p-Pb collisions for the first time

Summary & Outlook

• First measurement of v_2 of jet particles in p-Pb collisions

• Positive jet-particle v_2 in p-Pb collisions is observed, which is comparable with the high-$p_T v_2$ measured by ATLAS

• No dependence on associated-track p_T within uncertainties

Thank you for your attention!
Back up
Double gaussian function is introduced to fit the jet signal, the sum of harmonics is used to fit background.
Extraction of Jet v_2

- In each ($\Delta \eta, \Delta \phi$) region of TPC-TPC pairs, the v_2 of trigger TPC tracks can be obtained with long-range TPC-FMD correlation.
- The S/B obtained in TPC-TPC correlation is used as the weight to extract the v_2 of jet particles, in each p_T intervals.

\[
\frac{S}{S+B} \cdot \frac{S}{S+B} \cdot a_0 + \frac{B}{S+B} \cdot \left(a_1 (1-a_7 y) + a_1 a_4 (1-\cos x) + 2a_1 (1+a_7 y) (a_2 \cos (2x) + a_3 \cos (4x) + a_5 \cos (5x) + a_6 \cos (3x)) \right)
\]

$x = \Delta \phi, \ y = \Delta \eta$