

Observation of **b** dependence of $\mu^+\mu^$ acoplanarity in ultra-peripheral PbPb collisions

Shuai Yang (for the CMS collaboration) Rice University

Photon-photon interactions

Photon kinematics
• $p_T < \frac{\hbar}{R_A}$ ($\mathcal{O}(30)$ MeV @ LHC)

Equivalent photon approximation • Photon $p_T(\mathbf{b})$ (X)

- \succ Distinctive l^+l^- feature
 - Exclusive production
 - Concentrated at low p_T (back-to-back)

Observed in hadronic collisions

STAR, PRL 121 (2018) 132301

Modification of lepton pairs

Back-to-back correlation becomes weaker towards central collisions

Shuai Yang

Puzzle of the physics origin

STAR, PRL 121 (2018) 132301 ATLAS, PRL 121 (2018) 212301

Final-state effect?

Shuai Yang

Puzzle of the physics origin

CMS

STAR, PRL 121 (2018) 132301 ATLAS, PRL 121 (2018) 212301

Zha et al., PLB 800 (2020) 135089

Final-state effect?

Initial-state effect?

- Described by lowest-order QED without medium effect
 - **b** dependence of initial photon p_T

Shuai Yang

Control "centrality" in UPC

The CMS detector

HF: reject hadronic collisions Tracker + Muon chamber: muon identification ZDC: Neutron detection

Shuai Yang

α distribution in UPC

α distribution in UPC

Shuai Yang

Determine neutron multiplicity

α spectrum vs. neutron multiplicity

 \geq 0n0n (fewer neutrons) \Rightarrow XnXn (more neutrons)

- Tail contribution becomes larger
- Seems has depletion in the very small α

Shuai Yang

Initial Stages 2021

CMS

$\langle \alpha^{core} \rangle$ vs. neutron multiplicity

>Strong (5.7 σ) neutron multiplicity dependence of $\langle \alpha^{core} \rangle$

b dependence of initial photon p_T

$\langle \alpha^{core} \rangle$ vs. neutron multiplicity

>Strong (5.7 σ) neutron multiplicity dependence of $\langle \alpha^{core} \rangle$

- b dependence of initial photon p_T
- Qualitatively described by a leading order QED model

Brandenburg et al., arXiv: 2006.07365

Shuai Yang

Rapidity dependence of α spectrum

Rapidity dependence of α spectrum

ATLAS, arXiv:2011.12211

Shuai Yang

Initial Stages 2021

CMS

Rapidity dependence of $\langle \alpha^{core} \rangle$

 $\geq \langle \alpha^{core} \rangle$ has no rapidity dependence

• Core dominantly comes from LO $\gamma\gamma$ scattering

$\langle m_{\mu\mu} \rangle$ vs. neutron multiplicity

>Strong neutron multiplicity dependence of $\langle m_{\mu\mu} \rangle$

- Deviation from constant: $\gg 5\sigma$
- **b** dependence of initial photon energy

Summary

 \succ Observed strong **b** dependence of $\langle \alpha^{core} \rangle$ for the first time

- **b** dependence of photon p_T
- Constrain initial photon induced models
- Controllable baseline for searching final-state EM effects

Backup

Shuai Yang

Zoom in of α spectrum

Initial Stages 2021

CM

Dissociative pileup

