

CMS Overview

Yi Chen (MIT) for the CMS Collaboration Initial Stages 2021, Jan 10-15, 2021

The MIT HIG's work is supported by US DOE-NP

CMS Heavy-Ion Data

Year	System	E (TeV)	Data
2011	PbPb	2.76	174.3 µb-1
2013	pPb	5.02	35.5 nb ⁻¹
2015	PbPb	5.02	0.55 nb ⁻¹
2016	pPb	8.16	180.2 nb ⁻¹
2017	XeXe	5.44	6.0 µb⁻¹
2018	PbPb	5.02	1.7 nb ⁻¹

Special thanks to the LHC team and everyone involved in data taking

p

Topics

(Some of the) questions

What is the origin of small system collectivity?

How can we probe different regions of nPDF better?

What is the effect of geometry and initial state fluctuation on the quenching phenomenon?

How do we disentangle different nuclear effects?

What is the production mechanism of quarkonia?

How to disentangle various types of fluctuations?

How does the system evolve into thermalization?

Can we understand the QGP better by studying initial state effects?

Potential effects from initial electromagnetic field?

...and many others...

Broad categories

Ultra-peripheral

Heavy-flavor

Electroweak

Correlations

Ultra-peripheral collisions (UPC)

Ultra-peripheral

Clean environment: no hot medium effects

Large EM flux around the ion

γ Pomeron / γ

Pb

y-Pb & Pomeron-Pb topologies

Exclusive dimuon

 $\gamma\gamma \rightarrow \mu^+\mu^-$

Impact parameter => photon energy

Photon energy (p_T) => dimuon back-to-back-ness

impact parameter =>
number of forward
neutrons

Y. Shuai, Jan. 13

Exclusive dimuon

Y. Shuai, Jan. 13

arXiv:2011.05239

Forward Rapidity Gap

By looking into non-hadronic events, we gain access to pomeron / photon interactions

Characteristics: large forward rapidity gap in the detector (region with no visible activity)

CMS-HIN-PAS-18-019

Forward Rapidity Gap

K. Kuznetsova, Jan. 12

CMS-HIN-PAS-18-019

Electroweak results

Electroweak

Do not interact strongly with the hot QCD medium

Probes initial state

Good reference for other measurements

Z/γ^* in pPb

Measurement of dimuon mass, p_T , rapidity, and for the first time in heavy-ion, Φ*

> Highly correlated to p_T/mass but constructed entirely from angular quantities

Input to nPDF

CMS-HIN-PAS-18-003

Z/y^* in pPb

A. Baty, Jan. 14

CMS-HIN-PAS-18-003

Z boson in PbPb

Z boson yield as a function of centrality

A. Baty, Jan. 14

CMS-HIN-PAS-19-003

Z boson in PbPb

Z boson yield as a function of centrality

Some apparent "suppression" in peripheral 😡

Trend captured with geometry+selection (HG-PYTHIA)

A. Baty, Jan. 14

CMS-HIN-PAS-19-003

Heavy Flavor

Heavy Flavor

Samples the entirety of QGP evolution

QGP

Diffusive movement in QGP

Produced early-on

Q

J/ψ in Jet

20

Y. Kim, Jan. 13

PbPb: connection to quenching & hot nuclear effect

CMS-HIN-PAS-19-007

Quarkonia suppression

Helps disentangle cold nuclear effects and hot nuclear effects

Y. Kim, Jan. 13

CMS-HIN-PAS-18-005

Correlations

Correlations

Φ

Initial geometry + hydrodynamic expansion + fluctuation (+non-flow) => collective behavior

Information encoded in the detail of the correlations

$$f(\phi) \propto 1 + 2\sum v_n \cos(\phi - \Phi_n)$$

n

Correlation in UPC pPb

Q. Wang, Jan. 11

CMS-HIN-PAS-18-008

Heavy Flavor Collectivity

+

Collectivity: D⁰

Non-prompt D⁰ ~ D⁰ from b decay

 $v_2(Prompt D^0) > v_2(Non-prompt D^0)$

R. Pradhan, Jan. 13

arXiv:2009.07065

(Initial) Electric Field

27

Transient electric field in the beginning stages of collision

→ different v_2 between c meson and \overline{c} meson

Consistent with zero

Constrain: size of E-field effect

arXiv:2009.12628

Collectivity: Y(1S), Y(2S)

arXiv:2006.07707

Summary

Thank you!

All CMS results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Backup Slides Ahead

Category Icons

Definition of ϕ^* observable

$$\phi^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right)\sin\left(\theta_{\eta}^*\right)$$
$$\cos(\theta_{\eta}^*) = \tanh\left(\Delta\eta/2\right)$$

Example alpha

