Recent ATLAS measurements of correlations in small systems

Soumya Mohapatra Columbia University For the ATLAS Collaboration

ATLAS-CONF-2020-018 arXiv:1910.13978 (*Eur. Phys. J. C 80 (2020) 73*)

The ridge in *pp* collisions

- The ridge in A+A collisions is understood to be a manifestation of collective flow.
- Try to further our understanding of the origin of the *pp* ridge
 - Does it arise from collective (hydro) behavior?
 - Or is it an artifact of semi-hard processes?
- If latter then actively selecting/rejecting events with semi-hard processes (low-p_T jets) should enhance/weaken the ridge.

Event classes

- *WithJet*: Analysis performed on events that have a jet with $p_T > 10$ GeV, but with tracks within $|\eta| \le 1$ of the jet axis removed. This sample is dominated by events having a hard process
- *NoJet*: Analysis performed on events that do not have a $p_{\rm T} > 10$ GeV jet. This event sample is Φ dominated by soft processes *AllEvents*: Reject tracks within $|\eta| \leq 1$ of any reconstructed jet with $p_{\rm T} > 10$ GeV. Combination of the *With.Jet* and *No.Jet* classes. *Inclusive*: Standard *pp* ridge analysis: no jet-based rejected particles accepted selection of events and no rejection of jetassociated tracks -2 -1 0 1 2

ATLAS-CONF-2020-018

2PCs in different event classes

Ridge visible in all event – classes.

C(∆¢)

The strength of the ridge correlation is extracted using the "Template-fit" method,

(Phys. Rev. C 96 (2017) 024908)

that yields the Fourier 3 components of the correlation

Also see poster by Pengqi Yin in session A

v₂ in different event classes: multiplicity dependence

- Left panel shows the pp v₂ in the four different event classes, as a function of event multiplicity for the 0.5-5 GeV p_T range.
- The right panel shows the ratio to the *Inclusive* case
- There is only a marginal reduction in the v_2 for the *AllEvents* and *NoJet* cases

v_3 and v_4 : multiplicity dependence

Plots for higher order harmonics v_3 and v_4

The values for the *NoJet* and *AllEvents* cases are similar to the *inclusive* case as well. ~10% difference (except at low multiplicity), but with significant uncertainties

The *WithJet* case is not shown here due to large statistical uncertainties

v_2 in different event classes: p_T dependence

- Plots shows the $p_{\rm T}$ differential v₂ values for the different cases.
- Up to $p_T=3$ GeV all the *AllEvents* and *NoJet* cases have values similar to the *inclusive* case.
- The WithJet case is also consistent but with much larger statistical uncertainties.
- At higher p_T some significant differences are seen, but the *AllEvents* and *NoJet* cases are consistent with each other.
- Indicates that the *Inclusive* case has some bias at higher p_{T} , which is reduced when removing tracks associated with jets.

v_3 and $v_4 : p_T$ dependence

Up to $p_T=3$ GeV all the AllEvents and NoJet cases have values similar to the *inclusive* case for v_3 and v_4 as well.

The low- $p_T v_n$ are not affected by presence/absence of jets!

At higher p_T large deviations seen for v_3 . The values for the output of the inclusive case are much higher, indicating that the high- $p_T v_3$ in *inclusive* events arises from jet- output of the bias effects

- No suppression of High p_T particles observed in p+Pb collisions
- Three classes of events used:
 - Minimum-bias,
 - Events triggered by 75 GeV jets
 - Events triggered by 100 GeV jets
- For studying the high- $p_T v_n$ in the jet-triggered events, the associated particle in the 2PC is required to be separated $|\eta| > 1$ from any reconstructed jet with $p_T > 15$ GeV.
 - As opposed to the previous slides, where both particles in the 2PC were required to have |η| > 1 from jets.
 - Requirement ensures that the jets contribute to the *reference* particles but not to the *associated* particles in the 2PC
 - Reduces biases in the correlation measurements from back-to-back jets

- Plots shows the $p_{\rm T}$ differential v_2 and v_3 values for the different cases and for 0-5% central events.
- Up to $p_T=2$ GeV the minimum-bias as well as the jet-triggered events yield consistent v_n
- Between 2-9 GeV, the v_n in jet-triggered events are systematically smaller than the minimum-bias v_n .
- For $p_T > 9$ GeV v_n from the jet-triggered and minimum-bias events are consistent again.
- Significant v_n observed at high-p_T!

High- $p_T v_n$ in p+Pb : centrality dependence

- Plots shows the v_2 as a function of centrality for three p_T intervals:
 - $0.5 \le p_T \le 2$ GeV : the minimum-bias as well as the jet triggered events yield identical v_2 .
 - $2 < p_T < 9$ GeV : the jet triggered v_n values are systematically smaller than the minimum-bias v_2 .
 - $p_T > 9$ GeV v_n : from the jet-triggered and minimum-bias events are again consistent (and non-zero)
- Same trends that were seen in the *p*_T dependence
- The v_2 values in each event-class decrease slightly from central to peripheral events.

Understanding the difference

- Pairs in the 2PC can arise from many combinations
 - UnderlyingEvent-UnderlyingEvent (UE-UE)
 - HardScattering-UnderlyingEvent (HS-UE)
 - HardScattering-HardScattering (HS-HS)
- Low- $p_{\rm T}$ pairs in both minimum-bias and jet triggered cases are dominated by UE-UE pairs, leading to similar v_2 .
- At high $p_{\rm T}$ the pairs are dominated by pairs HS-UE pairs, again leading to similar v_2 .
- But in the transition region, the jet triggered and minimum-bias samples have a different contribution from the various types of pairs.
 - Minimum-bias events have a larger fraction of UE-UE pairs over this range

- Quenching based models have trouble simultaneously reproducing the high- $p_{\rm T}$ $v_{\rm n}$ and the $R_{\rm pPb}$
- Shown here are calculations from Zhang & Liao (arXiv:1311.5463)
- They reproduce the $v_n(p_T)$ reasonably well but show significant disagreement for the R_{pPb}

- A kinetic theory based calculation (Romatschke & Romatschke arXiv:1712.05815) qualitatively reproduces the low-p_T v₂.
- But significantly over predicts the v₃
- It qualitatively reproduces the high-p_T trends as well,
 - But is expected to contradict the measured R_{pPb}

Summary

- Measured v_2 - v_4 in *pp* collisions when rejecting tracks in the vicinity of jets
 - The $p_{\rm T}$ -integrated v₂ only decreases marginally (2-5%) when rejecting the jet associated tracks
 - Some of this change comes from softening of the $p_{\rm T}$ spectra when rejecting jets
 - Some comes from improvement in the template-fit procedure
- For the *p*_T differential measurements :
 - No significant change for $p_T < 3$ GeV: low- $p_T v_n$ not affected by presence/absence of jets.
 - Larger differences seen at higher p_T: difference quite large for v₃.
- Measured the v_n in p+Pb events up to p_T of 50 GeV
 - significant v_n is observed up to 50 GeV
- Measurements performed in minimum-bias events, as well as events triggered by high- p_T jets.
- The v_n for the jet-triggered and minimum-bias events are
 - Consistent over 0.5-2 GeV
 - Smaller for the jet-triggered events over 2-9 GeV
 - Consistent again for $p_T > 9$ GeV
- Trends in R_{pPb} and $v_n(p_T)$ not simultaneously reproduced by model calculations

Backups

Events in each class

Dependence on the jet p_{T} Threshold

High- p_{T} v_n in p+Pb

r (∆¢

 $FY^{\rm peri}(\Delta\phi)$ 0.04

> $(\nabla \phi) - G$ -0.02

2.7 2.6

0.02

-0.04

- Three classes of events used:
 - Minimum-bias.
 - Events triggered by 75 GeV jets
 - Events triggered by 100 GeV jets
- For studying the high- $p_T v_n$ in the jettriggered events, the associated particle in the 2PC is required to be separated $|\eta| > 1$ from any reconstructed jet with $p_{\rm T}>15$ GeV.
 - As opposed to the previous slides, where both particles in the 2PC were required to have $|\eta| > 1$ from jets.
 - Requirement ensures that the jets contribute to the *reference* particles but not to the associated particles in the 2PC

Large away-side peak when not requiring the separation of associated particles from jets

 $\gamma^{2}/NDE = 1.27$

+ FY peri(0)

+ FY peri (0

Understanding the difference

- Pairs in the 2PC can arise from many combinations
 - UnderlyingEvent-UnderlyingEvent (UE-UE)
 - HardScattering-UnderlyingEvent (HS-UE)
 - HardScattering-HardScattering (HS-HS)
- Low-p_T pairs in both minimum-bias and jet triggered cases are dominated by UE-UE pairs, leading to similar v₂.
- At high p_T the pairs are dominated by pairs HS-UE pairs, again leading to similar v₂.
- But in the transition region, the jet triggered and minimumbias samples have a different contribution from the various types of pairs.
 - Minimum-bias events have a larger fraction of UE-UE pairs over this range

