Measurement of Non-Exclusive Dimuon Pairs Produced via yץ Scattering in $\mathrm{Pb}+\mathrm{Pb}$ Collisions at $\sqrt{S_{N N}}=5.02 \mathrm{TeV}$ with the ATLAS Detector

Benjamin Gilbert on behalf of the ATLAS Collaboration
 CONF Note: ATLAS-CONF-2019-051

Introduction

> The electromagnetic field surrounding a charged, relativistic nucleus in $\mathrm{Pb}+\mathrm{Pb}$ collisions provides a flux of quasi-real photons described by the equivalent photon approximation (EPA).
> The collisions between these photons and other nuclei (YA) and other comoving photons (YY) have been measured in ultra-peripheral collisions.
> Recent theoretical developments predict these results via QED interference effects and a generalized EPA for quantum mechanical systems.
> This measurement could help distinguish between these mechanisms and search for interactions with the nuclear medium.

Methodology

Relevant Analysis Definitions
> Acoplanarity: Relative angular deflection of the dimuon pair

$$
\alpha \equiv 1-|\Delta \varphi| / \pi
$$

> Asymmetry: Transverse momentum imbalance of the dimuon pair

$$
A \equiv\left(p_{T_{1}}-p_{T_{2}}\right) /\left(p_{T_{1}}+p_{T_{2}}\right)
$$

$>\mathrm{k}_{\perp}$: Relative momentum deflection of the dimuon pair
$k_{\perp} \equiv\left(p_{T_{1}}+p_{T_{2}}\right)|\pi-\Delta \varphi| / 2=\pi \alpha \bar{p}_{T}$
$>\mathrm{d}_{\text {opair }}$: Quadrature sum of muon impact parameters in transverse plane

$$
d_{0 \text { pair }}=\sqrt{d_{0_{1}}^{2}+d_{0_{2}}^{2}}
$$

$>$ Signal region (z_{0} is longitudinal d_{0}):

$$
\alpha<0.012, A<0.08
$$

$d_{0 \text { pair }}<0.1 \mathrm{~mm}, z_{0 \text { pair }}<0.2 \mathrm{~mm}$
Template Fits of the Background

$\stackrel{d_{\text {opair }}[\mathrm{mm}]}{?}$

$>$ A template fit to $\mathrm{d}_{\text {opair }}$ is used to extract the heavy flavor muon background.
> The signal template is built using two possible sources:
> Monte Carlo simulation (Analysis default)
> Ultra-peripheral reference (Cross-check)

Results

> The normalized dimuon yields from YY scattering increase systematically from peripheral to central collisions.
$>$ For lower- p_{T} muon pairs, the pairs from UPC events make up a larger fraction of the total pairs.
p_{T} Dependence of k_{\perp} vs. α

$>$ The k_{\perp} variable gives consistent results across muon p_{T} ranges, while α does not.
$>$ This behavior supports the use of k_{\perp} as a more natural descriptor of modifications to the distribution with centrality.
Δy Dependence of k_{\perp}
$>$ Deflection due to magnetic fields in the QGP is predicted to be highly dependent on the dimuon rapidity difference.

$>$ No dependence on $\Delta \mathrm{y}$ is observed.

Centrality Dependence of k_{\perp}

> The most probable k_{\perp} value is determined via a shifted, symmetrized fit of the UPC template.
$>$ This peak is observed to shift significantly from peripheral to central collisions.

$>$ The most probable k_{\perp} value increases to 36 ± 1 (stat + syst) MeV in the $0-5 \%$ centrality interval.
$>$ The shift is 0 (by construction) for UPC events and 19 ± 1 (stat + syst) MeV in the most peripheral centrality interval, demonstrating a statistically significant trend.

Conclusions

> The yield of dimuons produced via YY scattering appears to increase slightly with collision centrality
$>$ With increased statistics, the $\alpha / \mathrm{k}_{\perp}$ distributions demonstrate that dimuon yields are suppressed at small $\alpha / \mathrm{k}_{\perp}$.
$>$ The most probable α / k_{\perp} value varies with centrality, where more central collisions have larger most probable deflections.
> The data qualitiatively matches recent theoretical calculations, but more direct comparisons are needed.
> Support: The United States Department of Energy Grant DOE-FG02-86ER-40281

