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Standard model of heavy ion physics

collisions thermalization hydro hadronization freezeout
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Based on developments in hydro theory over the last few years, we might replace
“thermalization” with “hydrodynamization”
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Azimuthal anisotropy measurements
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e Hydrodynamics translates initial shape (including fluctuations) into final state distribution
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Azimuthal anisotropy measurements
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Azimuthal anisotropy measurements

Weller & Romatschke, Phys. Lett. B 774, 351 (2017)
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@ Hydrodynamics provides simultaneous description of v», v3, v4 in p+p, p+Pb, Pb+Pb
dN
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Fluctuations in large systems

PHOBOS, Phys. Rev. C 81, 034915 (2010)

Relative Fluctuations
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| Fluctuations should also be
: translated, so measure o,,/(v2)

In| <1

Generally good agreement with
i models of initial geometry
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Multiparticle Correlations

CMS, Phys. Lett. B 765 (2017) 193-220
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o Fluctuations are very important and manifest in multiparticle correlations

v{2,|An| > 2} = \/v3 + 02, {4} =~ w{6} ~ »{8} ~ \/vi — 52
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Multiparticle Correlations

ALICE, JHEP 1807, 103 (2018)
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CMS, Phys. Rev. C 101, 014912 (2020)
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Ratios (v,{j}/va{k}) —
insights into fluctuations
via probability dist P(v,)

p+Pb data exhibit
expected patterns
based on geometry



The ridge is a signature of flow

STAR, PRC 73, 064907 (2006) CMS, JHEP 1009, 091 (2010) CMS, PLB 718, 795 (2013)
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Extended structure away from near-side jet peak interpreted as collective effect due to presence of QGP
o First discovered by STAR in Au+Au in 2004 (PRC 73, 064907 (2006) and PRL 95, 152301 (2005))
o Realized by STAR to be flow in 2009 (PRL 105, 022301 (2010))
o First found in small systems by CMS (JHEP 1009, 091 (2010) and PLB 718, 795 (2013))
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Testing hydro by controlling system geometry

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About N

Exploiting Intrinsic Triangular Geometry in Relativistic *He + Au
Collisions to Disentangle Medium Properties
J.L. Nagle, A. Adare, S. Beckman, T. Koblesky, J. Orjuela Koop, D. McGlinchey, P. Romatschke, J. Carlson, J. E.

Lynn, and M. McCumber
Phys. Rev. Lett. 113, 112301 — Published 12 September 2014

@ Collective motion translates initial geometry into final state distributions

@ To determine whether small systems exhibit collectivity, we can adjust the geometry and
compare across systems

@ We can also test predictions of hydrodynamics with a QGP phase
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Testing hydro by controlling system geometry

PHENIX, Nat. Phys. 15, 214-220 (2019)
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Testing hydro by controlling system geometry
PHENIX, Nat. Phys. 15, 214-220 (2019)
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@ v, and vz ordering matches €, and e3 ordering in all three systems

—Collective motion of system translates the initial geometry into the final state
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Testing hydro by controlling system geometry

0.2 PHENIX, Nat Phys 15 214 220 (2019)
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@ v, and v3 vs prt predicted or described very well by hydrodynamics in all three systems
—All predicted (except v, in d+Au) in J.L. Nagle et al, PRL 113, 112301 (2014)



Testing hydro by controlling system geometry
PHENIX, Nat. Phys. 15, 214-220 (2019)
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@ Initial state effects alone do not describe the data
—Phys. Rev. Lett. 123, 039901 (Erratum) (2019)
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Testing hydro by controlling system geometry
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@ Important to include initial state effects
—B. Schenke et al, Phys. Lett. B 803, 135322 (2020)
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Comparisons with STAR
STAR, Quark Matter 2019
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Comparisons with STAR
STAR, Quark Matter 2019
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PHENIX data update

@ PHENIX has completed a new analysis confirming the results published in Nature Physics

@ All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base

@ Observed bias in event plane resolutions caused by beam offset, beam angle, detector alignment

—This effect carefully studied systematically
—Extracted coefficients in new analysis do not show any bias

@ Measurement error ruled out
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PHENIX data update
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@ PHENIX has completed a new analysis confirming the results published in Nature Physics

@ All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base

@ Observed bias in event plane resolutions caused by beam offset, beam angle, detector alignment
—This effect carefully studied systematically
—Extracted coefficients in new analysis do not show any bias

@ Measurement error ruled out
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PHENIX data update
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@ PHENIX has completed a new analysis confirming the results published in Nature Physics

@ All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base

@ Observed bias in event plane resolutions caused by beam offset, beam angle, detector alignment
—This effect carefully studied systematically
—Extracted coefficients in new analysis do not show any bias

@ Measurement error ruled out

R. Belmont, UNCG IS 2021, 10 January 2021 - Slide 14



STAR and PHENIX detector comparison
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@ The Nature Physics paper uses the BBCS-FVTXS-CNT detector combination
—This is very different from the STAR analysis

@ We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR
—Closer, and “balanced” between forward and backward, but still different
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More STAR and PHENIX data comparisons

@ STAR not showing new results on this topic for IS21, but has verified their QM19 results
—Both experiments’ results confirmed, so differences need to be understood in terms of physics
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More STAR and PHENIX data comparisons
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@ STAR not showing new results on this topic for IS21, but has verified their QM19 results
—Both experiments’ results confirmed, so differences need to be understood in terms of physics

@ Good agreement with STAR for v,

—Similar physics for the two different pseudorapidity acceptances
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More STAR and PHENIX data comparisons
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@ STAR not showing new results on this topic for IS21, but has verified their QM19 results
—Both experiments’ results confirmed, so differences need to be understood in terms of physics

@ Good agreement with STAR for v,
—Similar physics for the two different pseudorapidity acceptances

@ Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Decorrelation effects much stronger for v5 than v, (cf Qipeng's talk right before this one)
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More STAR and PHENIX data comparisons
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@ STAR not showing new results on this topic for IS21, but has verified their QM19 results
—Both experiments’ results confirmed, so differences need to be understood in terms of physics

@ Good agreement with STAR for v,
—Similar physics for the two different pseudorapidity acceptances

@ Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Decorrelation effects much stronger for v5 than v, (cf Qipeng's talk right before this one)

R. Belmont, UNCG IS 2021, 10 January 2021 - Slide 16



Understanding the nonflow contribution: v, in p+Au as a case study
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Understanding the nonflow contribution: v, in p+Au as a case study
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R. Belmont,

The large difference between the
PHENIX published and STAR
preliminary in this case is nonflow

PHENIX suppresses nonflow via
kinematic selection

STAR applies non-flow subtraction
procedure

One needs to be careful about the
risk of over-subtraction
methods—S. Lim et al, Phys. Rev.
C 100, 024908 (2019)

IS 2021, 10 January 2021 - Slide 17



Understanding the nonflow contribution: v, in p+Au as a case study
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Understanding the nonflow contribution: v, in p+Au as a case study

0.3 —
C p+Au at 20( | .
C [@)3%2PC: 30< <-1.0, rH<O .35, 1.0<n<3.0 ]
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R. Belmont,

UNCG

@ The large difference between the
PHENIX published and STAR
preliminary in this case is nonflow

@ PHENIX suppresses nonflow via
kinematic selection

@ STAR applies non-flow subtraction
procedure

o Considerable improvement in
nonflow subtraction in STAR 2019

preliminary, reasonable agreement
with PHENIX
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Intermission

How about extremely small systems?

R. Belmont, UNCG IS 2021, 10 January 2021 - Slide 18



Extremely small systems in AMPT
J.L. Nagle et al, Phys. Rev. C 97, 024909 (2018)

Case 1: ¢, = (12.3 £ 0.01)E-3

| Casel:c,=(3.70 £ 0.02)E-3
Case 2: ¢, = (3.30 £ 0.01)E-3

[ Case 2:c, =(3.80 + 0.02)E-3

@0.0215---|-...|....|....|....|....|..-_ @0.0215_..|....|....|....|....|....|..._
81 | AMPTe" +e - g+ T [One String] @ ] 81 |l AMPT [Two Strings] @ ]
[ p® > 05 Gevic: p™ > 0.5 Gevie ] [ p® > 05 Gevic: p™ > 0.5 Gevie ]

0.021— — 0.021— —

r e Case 1: With Interactions 7 B e  Case 1: With Interactions 7

r = Case 2: Without Interactions 7 B = Case 2: Without Interactions 7

0.0205— — 0.0205— —

0.02[— 0.02

0.0195 0.0195

Ag[rad] Ag[rad]

@ A single color string (e™+e~ collisions) shows no sign of collectivity

@ Two color strings shows collectivity
—In AMPT, p-+p has two strings and p/d/*He+Au have more
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Extremely small systems at LEP
Badea et al, Phys. Rev. Lett. 123, 212002 (2019)

ALEPH e"e” — hadrons, s = 91GeV
Ny 230, Joos(@,,)| < 0.94
p‘Tab >0.2 GeV

Lab coordinates
<

No apparent collectivity in ALEPH et +e~ data

Thrust coordinates

e*e — hadrons, s = 91 GeV
10T T T T T T T T T T T T T T T
T T ALEPH Archived Data.
8[ .. Data T16<An <32 1
3 Fitto PYTHIA6.1 P
£ el 1 >
& O — PYTHIA + v,=0.1 // Nry 2 30
L —PYTHIA+v=02 1
L PYTHIA+v,-03
o
|ER / T g
=1 .,«/ S P
of e Copypy = 3591+ iy =128 1
.t qu cqordipate§ 'I:hrusjt cot‘)rdin‘ates‘ (20)5)

0 05 1 15 2 25
Ad

30 05 1 15 2 25 3
Ad

@ Brought up as a possibility in e.g. P. Romatschke, Eur. Phys. J. C 77, 21 (2017)
@ Not expected in parton escape picture (see previous slide)
o Not expected (below /s ~ 7 TeV) in e.g. P. Castorina et al, arXiv:2011.06966
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Extremely small systems at HERA and the EIC

Abt et al, JHEP 04, 070 (2020)

ZEUS
T [T oo | &L [ mewosm “The correlations observed here do not indicate the
S t oot | £ 7y >01Gev kind of collective behaviour recently observed at the
s P, <50GeV ? T\pT>o1Gev,\An|>2 . . . . T
02 . A5<n<20 o] pr>05GeV. janl>2 highest RHIC and LHC energies in high-multiplicity
= () = (b> hadronic collisions.”

95095@9@599‘4%@ No collectivity in e+p collisions at HERA —
$ Not likely to find collectivity in e+p collisions at EIC
But what about e+A collisions?

community (see talks by R. Milner, E. Ferreiro,

Considerable interest in this topic within EIC
% others...)
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Extremely small systems at the LHC

ATLAS Preliminary, B. Seidlitz (this conference)

c e a 0.2 T
> 0.14 ATLAS Preliminary Template Fit ] >  ATLAS Preliminary Template Fit |
r _ B F Pb+Pb, 1.0 ub™- 1.7 nb? B
[ Pb+Pb {5, =5.02TeV 2.0<[An|<50 ] [ Voo = 5.02 Tev, omn 2.0<|An|<5.0 |
0.12F 1.0 ub*-1.7 nb* ] (A ’ ¥ p+Pb, N;° 2 60 |
[ Z,An>25,0nXn 0.5<p:b<5.0 GeV 0.15- ZA >(92;5 7 PP, fohz 60 —|
0.1 04 <P <20Gev b AV, BV, ] L 20 <N <60 s, & g i
T ¢ v, Photonuclear p+Pb +V, Vs ] [ ¢ Photonuclear g F ] ]
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I % ] 0.1- 7
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@ Observation of collectivity in photonuclear collisions
@ Collective picture: photon fluctuates into a vector meson (e.g. p), not so different from p+Pb
@ Initial state picture: CGC calculation in good agreement, further investigation needed



Brief summary and outlook

@ Long term understanding of collective and hydrodynamical behavior of heavy ion data
@ Geometry and fluctuations play essential roles in observables

@ PHENIX results on small systems geometry scan fully confirmed
—Apparent STAR-PHENIX discrepancy must be understood in terms of physics
—Better understanding of longitudinal dynamics is essential

@ Apparent (near-) universality of collectivity in hadronic collisions
—Collectivity observed in photonuclear collisions (which may be purely hadronic)

@ Apparent absence of collectivity in leptonic and semi-leptonic collisions

@ Possibility for future observation of collectivity in (semi-) leptonic collisions?
—DBoth interest and opportunity in e+A collisions at the EIC
—Far-future et +e~ colliders might reach necessary conditions for collectivity
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