

Beam-energy and collision-system size dependence of the anisotropic flow measurements

Maria Stefaniak for STAR Collaboration

IITIAL STAGES OF HIGH-ENERGY NUCLEAR COLLISIONS

Anisotropy in initial geometry

Anisotropic flow measurements are sensitive to:

- O Initial-state spatial anisotropy
- **O** Flow fluctuations and correlations
- O Transport properties (i.e., $\frac{\eta}{s}, \frac{\zeta}{s}, \frac{\hat{q}}{T^3}, ...)$

px

Anisotropic flow measurements are sensitive to:

- O Initial-state spatial anisotropy
- O Flow fluctuations and correlations
- O Transport properties (i.e., $\frac{\eta}{s}, \frac{\zeta}{s}, \frac{\hat{q}}{T^3}, ...)$

What are the respective roles of ε_n and its fluctuations, flow correlations and transport properties on the v_n ?

Outline: OPID flow harmonics **O**Flow decorrelation O High p_T flow harmonics

The Solenoid Tracker At RHIC Experiment

Time Projection Chamber

Tracking charged particles with: O Full azimuthal coverage $O |\eta| < 1$ coverage

O Particle Identification

Time-Of-Flight

O Particle identification (high momentum)

Event Plane Detector

O Acceptance : $2.1 < |\eta| < 5.1$.

2-particle correlations (2PC)

$$c_n\{2\} = \langle \langle 2 \rangle \rangle_{a|b} = \langle \langle e^{in(\phi_1^a - \phi_2^b)} \rangle = \frac{\langle \langle Q_{n,a} Q_{n,b}^* \rangle \rangle}{\langle \langle M_a M_b \rangle \rangle}$$

• The non-flow contribution is reduced with $\Delta \eta$ gap

& **p**_T (**PID**) - differential flow harmonics Integrated $v_n\{2\} = \sqrt{c_n\{2\}}$ $v_n(p_T) = v_n^2(p_T, p_T^{ref}) / \sqrt{v_n^2(p_T^{ref}, p_T^{ref})}$

Identified hadrons flow harmonics: 2-particle correlations (2PC)

$$c_n\{2\} = \langle \langle 2 \rangle \rangle_{a|b} = \langle \langle e^{in(\phi_1^a - \phi_2^b)} \rangle = \frac{\langle \langle Q_{n,a} Q_{n,b}^* \rangle \rangle}{\langle \langle M_a M_b \rangle \rangle}$$

Ο The <u>non-flow contribution</u> is reduced with $\Delta \eta$ gap

Integrated **p**_T (**PID**) - differential flow harmonics & $v_n(p_T) = v_n^2(p_T, p_T^{ref}) / \sqrt{v_n^2(p_T^{ref}, p_T^{ref})}$ $v_n\{2\} = \sqrt{c_n\{2\}}$

O Both hydro simulations reproduce qualitatively v_n collisions for Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Identified hadrons flow harmonics: 2-particle correlations (2PC)

$$c_n\{2\} = \langle \langle 2 \rangle \rangle_{a|b} = \langle \langle e^{in(\phi_1^a - \phi_2^b)} \rangle = \frac{\langle \langle Q_{n,a} Q_{n,b}^* \rangle \rangle}{\langle \langle M_a M_b \rangle \rangle}$$

The <u>non-flow contribution</u> is reduced with $\Delta \eta$ gap 0

p_T (**PID**) - differential flow harmonics Integrated & $v_n(p_T) = v_n^2(p_T, p_T^{ref}) / \sqrt{v_n^2(p_T^{ref}, p_T^{ref})}$ $v_n\{2\} = \sqrt{c_n\{2\}}$

- **O** Both hydro simulations reproduce qualitatively v_n collisions for Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- C Eccentricity does not differ relevantly between collision energies \rightarrow differences (~5%) caused by transitions in transport coefficients

Identified hadrons flow harmonics: 2-particle correlations (2PC)

$$c_n\{2\} = \langle \langle 2 \rangle \rangle_{a|b} = \langle \langle e^{in(\phi_1^a - \phi_2^b)} \rangle = \frac{\langle \langle Q_{n,a} Q_{n,b}^* \rangle \rangle}{\langle \langle M_a M_b \rangle \rangle}$$

The <u>non-flow contribution</u> is reduced with $\Delta \eta$ gap 0

p_T (**PID**) - differential flow harmonics Integrated **&** $v_n(p_T) = v_n^2(p_T, p_T^{ref}) / \sqrt{v_n^2(p_T^{ref}, p_T^{ref})}$ $v_n\{2\} = \sqrt{c_n\{2\}}$

- **O** Both hydro simulations reproduce qualitatively v_n collisions for Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- C Eccentricity does not differ relevantly between collision energies \rightarrow differences (~5%) caused by transitions in transport coefficients

 $\sqrt{s_{NN}} = 200 \, \text{GeV}$

• Visible mass ordering for both harmonics and energies

 $\sqrt{s_{NN}} = 200 \,\text{GeV}$

• Visible mass ordering for both harmonics and energies

 $\sqrt{s_{NN}} = 200 \, \text{GeV}$

 $\sqrt{s_{NN}} = 200 \, \text{GeV}$

Significant reference for the theoretical studies of initial fluctuation and QGP

Identified hadrons flow harmonics: Au+Au @ BES

decreasing collision energy

STAR Collaboration: Phys. Rev. C 88 (2013) 14902

(Anti)particle v_n difference in $\sqrt{s_{NN}}$

O Difference of protons - antiprotons elliptic flow increases with

Identified hadrons flow harmonics: Au+Au @ BES

(Anti)particle v_n difference in $\sqrt{s_{NN}}$

Longitudinal flow correlations

◆ Fluctuation of sources in two nuclei

Evolution of the QGP in (3+1)D

Longitudinal dynamics can provide the full space-time evolution of the fireball.

◆ Factorization ratio, r_n, is constructed as a measure of the flow decorrelation CMS Collaboration: Phys. Rev. C 92 (2015) 034911

$$r_{n}(\eta) = \frac{\langle V_{n}(-\eta)V_{n}^{*}(\eta_{\text{ref}})\rangle}{\langle V_{n}(\eta)V_{n}^{*}(\eta_{\text{ref}})\rangle}$$
$$= \frac{\langle v_{n}(-\eta)v_{n}(\eta_{\text{ref}})\cos n(\Psi_{n}(-\eta)-\Psi_{n}(\eta_{\text{ref}}))\rangle}{\langle v_{n}(\eta)v_{n}(\eta_{\text{ref}})\cos n(\Psi_{n}(\eta)-\Psi_{n}(\eta_{\text{ref}}))\rangle}$$

\blacklozenge r_n measures relative fluctuation between v_n(- η) and v_n(η)

A large η gap is imposed to avoid short-range correlations.

Longitudinal flow correlations

Energy dependence of v_2 decorrelation

Energy dependence of v_3 decorrelation

r₂ comparison between 27 GeV and 200 GeV

- \bullet Strongest v₂ decorrelation at 27 GeV is observed for all shown centralities.
- \bullet v₂ decorrelation at 27 GeV is ~2 times larger than at 200 GeV.

r₃ comparison between 27GeV and 200GeV

\bullet Stronger v₃ decorrelation at 27 GeV is observed for the two centralities.

Longitudinal flow correlations

v_2 decorrelation scaled by beam rapidity

 v_3 decorrelation scaled by beam rapidity

r₂ comparison between 27 GeV and 200 GeV with rapidity normalization

Even after y_{beam} normalization, r₂ shows:

◆ 0-10% weak energy dependence;

◆10-40% & 40-80% no energy dependence.

r_3 comparison between 27 GeV and 200 GeV with rapidity normalization

 \bullet Stronger v₃ decorrelation at 27 GeV after y_{beam} normalization...

High p_T flow harmonics

- **O** The two-particle flow harmonics contains short- and long-range non-flow correlations:
 - Short-range non-flow effect gets reduced using $|\Delta \eta| > 0.7$ cut
 - Long-range non-flow effect gets reduced using:
 - Peripheral Subtraction
 - + Global Momentum Conservation $v_n^{ab} = v_n^a v_n^b + \delta_{short} + \delta_{long}$
- O Peripheral Subtraction

$$\begin{aligned} \nu_{nn}^{PS}(p_T) &= \nu_{nn}^{cent\%}(p_T) - \chi^{cent\%}(p_T) \, \nu_{nn}^{90\%}(p_T) \\ \chi^{cent\%}(p_T) &= \nu_{11}^{cent\%}(p_T) / \nu_{11}^{90\%}(p_T) \end{aligned}$$

O Global Momentum Conservation

$$v_{nn} = v_{nn}^{flow} - C(\bar{v}_{n+1\,n+1} + \bar{v}_{n-1\,n-1})$$

For more information please see **Niseem Magdy** poster:

https://indico.cern.ch/event/854124/contributions/4135478/

The STAR collaboration PLB 784 (2018) 26-32

 $v_{11} = v_{1a}v_{1b} - Cp_{Ta}p_{Tb}$ $x10^{-3}$ 'Au+A'u (b) 0-5% $0.6 < p_T^a < 1.0 (GeV/c)^{-1}$ 200 GeV $0.2 < p_T^a < 0.6 (GeV/c)^{-1}$ -1 p_T^b (GeV/c) 0.12 Au+Au Au+Au 200 GeV 200 GeV 0.08 v_1^{even} 0.04 10%-20% 20%-30% 30%-40% **STAR Preliminary STAR Preliminary** 3_{0} 0.02 0.01 $p_{T}(GeV/c)$ 1/<Mult>

Good agreement observed between; ♦ GMC and the peripheral subtraction methods \bullet STAR after the subtraction and PENIX π° measurements

High p_T flow harmonics

v₂ (p_T) compared to similar LHC

 \mathbf{v}_2 (p_T) for high and low p_T show similar trend to the LHC data • Measurements of high p_T v2 will add an additional constrain on energy dependance of \hat{q}/T^3

For more information please see **Niseem Magdy** poster: https://indico.cern.ch/event/854124/contributions/4135478/

Pb+Pb 2760 GeV (c)Au+Au 200 GeV 📥 20-30% 40-50% **STAR Preliminary STAR Preliminary** 2760 GeV (c)40-50% 200 GeV 🚽 16 12 16 0 12 8 8 p_{T} (GeV/c) p_{T} (GeV/c)

The ALICE collaboration JHEP 07 (2018) 103, 2018

High p_T flow harmonics

The collision-system size dependence of $v_n (p_T)$

O $v_2(p_T)$ for high and low p_T show a collisionsystem size dependence

O v_3 (p_T) for high and low p_T are collision-system size independent

O $v_n (p_T)/\epsilon_n$ scales into one curve

 \bullet The v_n(p_T) measurement will add additional constrain on the path length dependence of the energy loss

For more information please see **Niseem Magdy** poster:

https://indico.cern.ch/event/854124/contributions/4135478/

22

- O Identified hadrons flow harmonics:
 - Eccentricity does not differ relevantly between examined collision energies differences caused by transitions in transport coefficients
 - Mass ordering present for v_2 and v_3 for $\sqrt{s_{NN}} = 39$ and 200 GeV
 - ◆ Similar trends of differences between triangular flow of particles and antiparticles as in elliptic flow

- O Identified hadrons flow harmonics:
 - Eccentricity does not differ relevantly between examined collision energies differences caused by transitions in transport coefficients
 - Mass ordering present for v_2 and v_3 for $\sqrt{s_{NN}} = 39$ and 200 GeV
 - Similar trends of differences between triangular flow of particles and antiparticles as in elliptic flow
- O Longitudinal flow decorrelations:
 - Energy dependence of longitudinal flow decorrelation at RHIC provide new constraints on longitudinal dynamics of heavy-ion collisions
 - After beam rapidity normalization, r_2 shows no clear energy dependence, while r_3 still has clear energy dependence

- O Identified hadrons flow harmonics:
 - Eccentricity does not differ relevantly between examined collision energies differences caused by transitions in transport coefficients
 - Mass ordering present for v_2 and v_3 for $\sqrt{s_{NN}} = 39$ and 200 GeV
 - Similar trends of differences between triangular flow of particles and antiparticles as in elliptic flow
- O Longitudinal flow decorrelations:
 - Energy dependence of longitudinal flow decorrelation at RHIC provide new constraints on longitudinal dynamics of heavy-ion collisions
 - After beam rapidity normalization, r_2 shows no clear energy dependence, while r_3 still has clear energy dependence
- **O** High p_T flow harmonics
 - We observe a good agreement between GMC and the peripheral subtraction methods
 - \bullet v₂ at RHIC shows a similar p_T dependence to LHC data in a wide range of p_T.
 - \bullet Our high p_T measurements will add additional constrain on the path length dependence of the energy loss.

- O Identified hadrons flow harmonics:
 - Eccentricity does not differ relevantly between examined collision energies differences caused by transitions in transport coefficients
 - Mass ordering present for v_2 and v_3 for $\sqrt{s_{NN}} = 39$ and 200 GeV
 - Similar trends of differences between triangular flow of particles and antiparticles as in elliptic flow
- O Longitudinal flow decorrelations:
 - Energy dependence of longitudinal flow decorrelation at RHIC provide new constraints on longitudinal dynamics of heavy-ion collisions
 - After beam rapidity normalization, r_2 shows no clear energy dependence, while r_3 still has clear energy dependence
- **O** High p_T flow harmonics
 - We observe a good agreement between GMC and the peripheral subtraction methods
 - \bullet v₂ at RHIC shows a similar p_T dependence to LHC data in a wide range of p_T.
 - \bullet Our high p_T measurements will add additional constrain on the path length dependence of the energy loss.

