





# Nuclear deformation effects via Au+Au and U+U collisions from STAR

#### Jiangyong Jia for the STAR Collaboration

See poster by Chunjian Zhang on Jan 11, id105



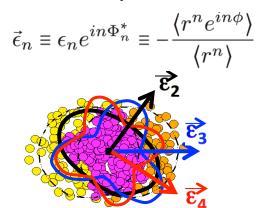
The VI<sup>th</sup> International Conference on the INITIAL STAGES
OF HIGH-ENERGY NUCLEAR
COLUSIONS



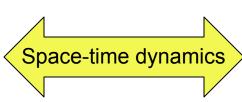


### Connecting the final state to the initial state<sup>2</sup>

#### **Initial Shape**

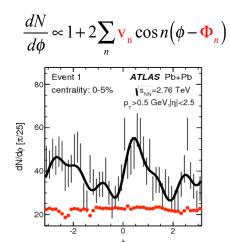


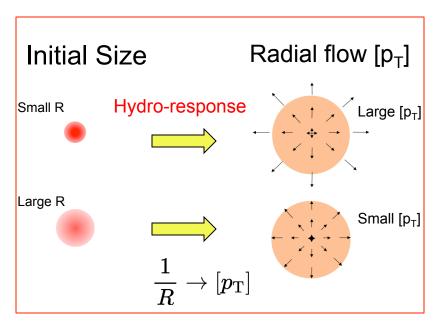
#### Hydro-response

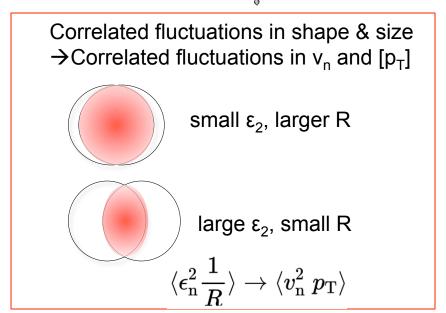


$$\epsilon_{
m n} 
ightarrow v_{
m n}$$

#### Harmonic flow







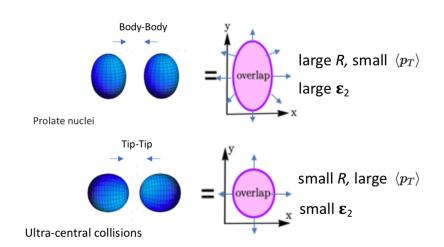
Reflected by  $p(v_n)$ ,  $p([p_T])$ , and  $p(v_n,[p_T])$ 

#### Connecting the initial state to nuclear geometry

• Fluctuations of  $v_n$  and  $[p_T]$  are sensitive to nuclear geometry

$$ho(r, heta)=rac{
ho_0}{1+e^{(r-R_0(1+oldsymbol{eta_2}Y_{20}( heta))/a}}
ightharpoonup Au+{
m Au}$$

• Fluctuations are broader in U+U than Au+Au due to large  $\beta_2$ 



U+U: expect anti-corr. for  $v_2$ -[ $p_T$ ] in ultra-central

G. Giacalone PRL124, 202301 (2020)

 $\beta_2$  of <sup>238</sup>U is large

| reference | Raman et al. | Löbner et al. | Möller et al. | Möller et al. |
|-----------|--------------|---------------|---------------|---------------|
| method    | $\exp$       | $\exp$        | FRDM          | FRLDM         |
| $eta_2$   | 0.286        | 0.281         | 0.215         | 0.236         |

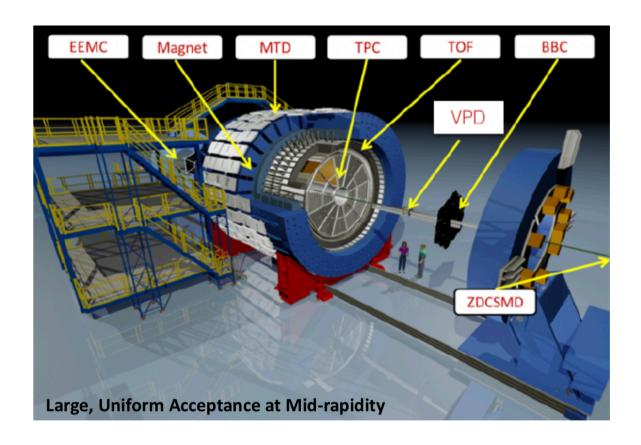
BNL nuclear database

 $\beta_2$  of <sup>179</sup>Au is small and can be used as baseline

| reference | Möller et al. | Möller et al. | CEA DAM |
|-----------|---------------|---------------|---------|
| method    | FRDM          | FRLDM         | HFB     |
| $eta_2$   | -0.131        | -0.125        | -0.10   |

Probe nuclear structure at a shorter time scale:  $\sim 10^{-23}$ s vs  $10^{-8}$ - $10^{-12}$ s for isomer

#### STAR detector and datasets



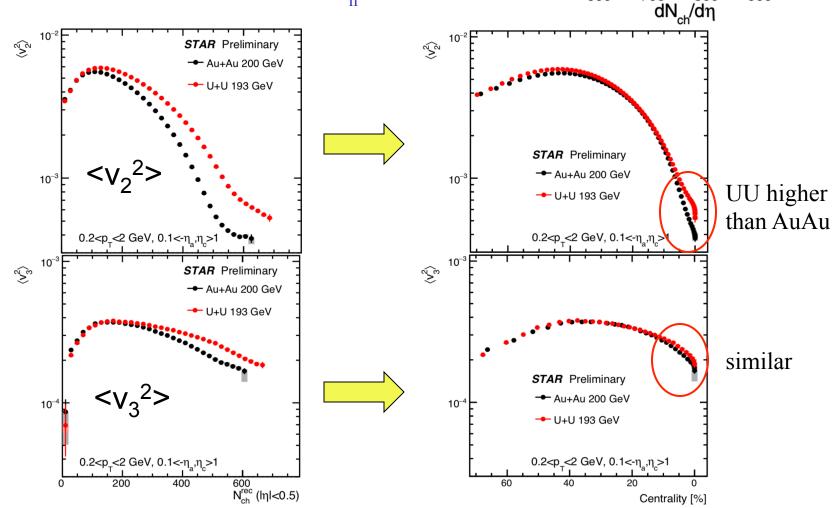
- Datasets
  - Au+Au@200 GeV 2010 and 2011
  - U+U@193 GeV 2012.

- Measurement based on TPC
  - $|\eta| < 1.0, 0.2 < p_T < 2 \text{ GeV/c}$
- Centrality based on  $N_{ch}^{rec}$  with  $|\eta| < 0.5$

Three topics:  $p(v_n)$ ,  $p([p_T])$ , and  $p(v_n,[p_T])$ 

#### Flow fluctuations

- STAR has shown flow fluctuations  $v_2\{4\}$  in central collisions are influenced by nuclear deformation
  - Negative in near-spherical Au+Au, positive in deformed UU
- Nuclear deformation also seen in 2PC v<sub>n</sub> in UCC.



PRL 115, 222301 (2015)

800

900

 $v_2^4\{4\}\ (\times 10^8)$ 

Au+Au

700

600

# [p<sub>T</sub>] fluctuations

Quantified with variance and skewness

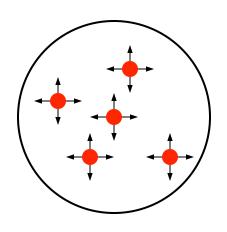
$$\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle = \left( \frac{\sum_{i \neq j} w_i w_j (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle \rangle)}{\sum_{i \neq j} w_i w_j} \right)_{\mathrm{evt}} \delta p_{\mathrm{T}} = p_{\mathrm{T}} - [p_{\mathrm{T}}]$$

$$\sum_{i \neq j} w_i w_j$$
Negative Skew Positive Skew Skew Positive Skew P

$$\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle = \left( \frac{\sum_{i \neq j \neq k} w_{i} w_{j} w_{k} (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},k} - \langle \langle p_{\mathrm{T}} \rangle \rangle)}{\sum_{i \neq j \neq k} w_{i} w_{j} w_{k}} \right)_{\mathrm{evt}}$$

#### Independent source picture:

convolution of signal from each source



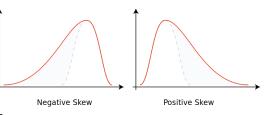
$$egin{aligned} \left\langle \delta p_{
m T} \delta p_{
m T} 
ight
angle_{
m AA} &\sim rac{\left\langle \delta p_{
m T} \delta p_{
m T} 
ight
angle_{
m pp}}{N_{
m part}} \ \left\langle \delta p_{
m T} \delta p_{
m T} \delta p_{
m T} 
ight
angle_{
m pp}}{N_{
m part}^2} \end{aligned}$$

- Expected to follow a power-law function of N<sub>part</sub> or N<sub>ch</sub>
- Since particle  $p_T > 0 \rightarrow$  skewness in each source is positive

### [p<sub>⊤</sub>] fluctuations ₁

#### Quantified with variance and skewness

$$\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle = \left( \frac{\sum_{i \neq j} w_{i} w_{j} (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle \rangle)}{\sum_{i \neq j} w_{i} w_{j}} \right)_{\mathrm{evt}} \delta p_{\mathrm{T}} = p_{\mathrm{T}} - [p_{\mathrm{T}}]$$
self-correlations removed w is weight for each particular particular to the self-correlation of the



w is weight for each particle

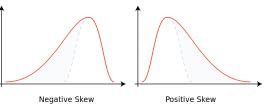
$$\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle = \left( \begin{array}{c} \sum_{i \neq j \neq k} w_i w_j w_k (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle) (p_{\mathrm{T},k} - \langle \langle p_{\mathrm{T}} \rangle)) \\ \sum_{i \neq j \neq k} w_i w_j w_k \end{array} \right)_{\mathrm{evt}}$$

Au+Au: follow power-law decrease, but with strong deviation in central

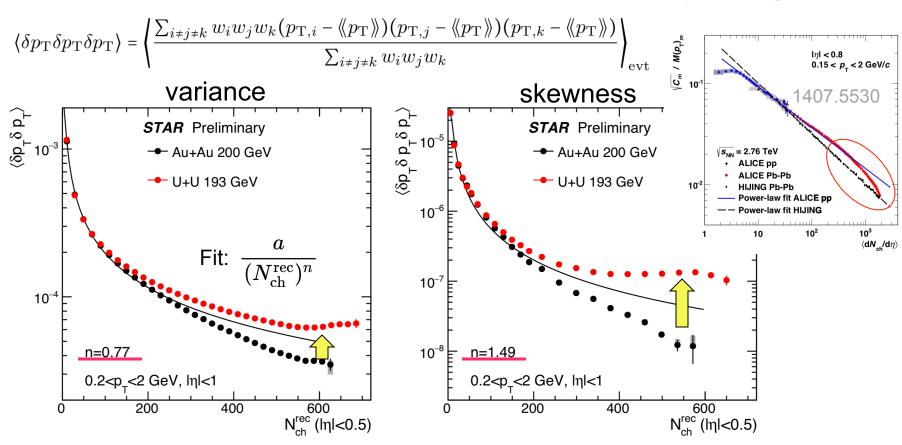
### [p<sub>T</sub>] fluctuations ↑

#### Quantified with variance and skewness

$$\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \rangle = \left\langle \frac{\sum_{i \neq j} w_i w_j (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle \rangle)}{\sum_{i \neq j} w_i w_j} \right\rangle_{\mathrm{evt}} \delta p_{\mathrm{T}} = p_{\mathrm{T}} - [p_{\mathrm{T}}]$$



self-correlations removed w is weight for each particle



- Au+Au: follow power-law decrease, but with strong deviation in central
- U+U: large enhancement in mid-central and central → size fluctuations enhanced

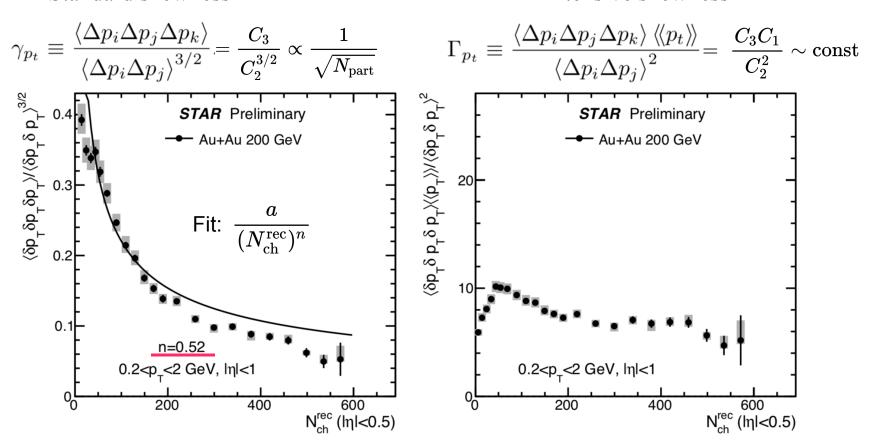
### [p<sub>T</sub>] skewness: Au+Au data

Quantify with normalized quantities

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

Standard skewness

Intensive skewness



Standard skewness approximately follows  $1/\sqrt{N_{ch}}$  scaling Intensive skewness is  $\sim$  const

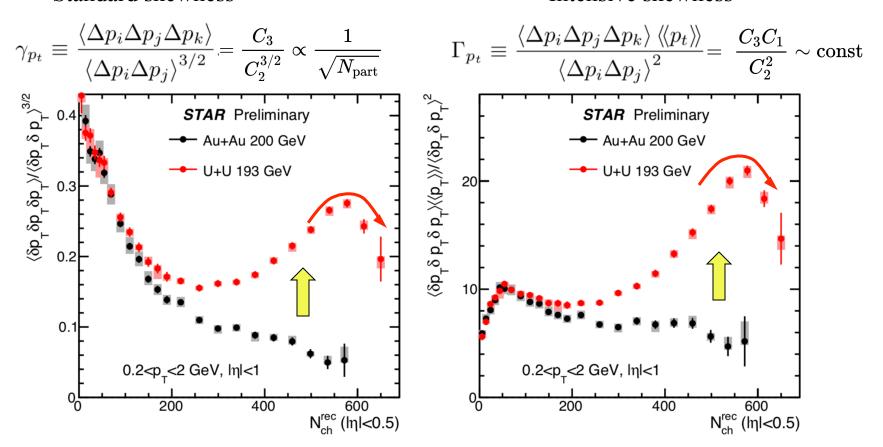
### [p<sub>T</sub>] skewness: compare to U+U data

Quantify with normalized quantities

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

Standard skewness

Intensive skewness



U+U shows significant enhancement in central region

### [p<sub>T</sub>] skewness: compare to Trento

Quantify with normalized quantities

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

Standard skewness

Intensive skewness

 $\langle \delta p_{
m T} \delta p_{
m T} 
angle \sim \left\langle \delta rac{E}{S} \delta rac{E}{S} 
ight
angle \; \left\langle \delta p_{
m T} \delta p_{
m T} \delta p_{
m T} 
ight
angle \sim \left\langle \delta rac{E}{S} \delta rac{E}{S} \delta rac{E}{S} 
ight
angle \; .$ 

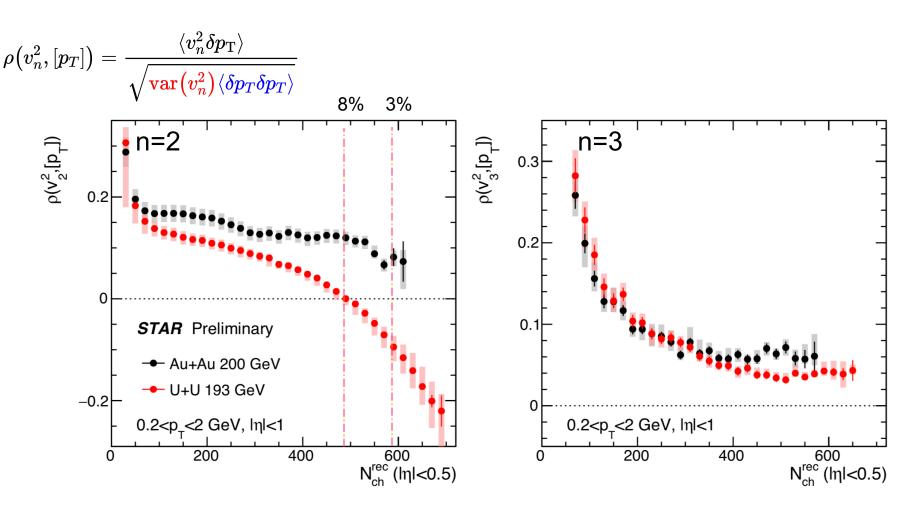
Trento model skewness lacks sensitivity to nuclear deformation

### Flow-[p<sub>⊤</sub>] correlations

Three-particle  $v_n$ - $v_n$ -[ $p_T$ ] correlator in a normalized form:

$$egin{aligned} \delta p_{ ext{T}} &= p_{ ext{T}} - [p_{ ext{T}}] & \operatorname{cov} \left( v_n^2, [p_{ ext{T}}] 
ight) \ & \langle v_n^2 \delta p_{ ext{T}} 
angle \equiv \left\langle rac{\sum_{i 
eq j 
eq k} w_i w_j w_k e^{in\phi_i} e^{-in\phi_j} (p_{ ext{T},k} - \langle \langle p_{ ext{T}} 
angle \rangle)}{\sum_{i 
eq j 
eq k} w_i w_j w_k} 
ight
angle_{ ext{evt}} \ & \left\langle v_n^2 \delta p_{ ext{T}} 
ight
angle \\ & \left\langle v_n^2 \delta p_{ ext{T}} 
ight
angle \\ & \sqrt{\operatorname{var} \left( v_n^2 \right) \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle}} \end{aligned} \qquad \text{P. Bozek 1601.04513} \ & \operatorname{var} \left( v_n^2 \right) = \left\langle \frac{\sum_{i 
eq j} w_i w_j (p_{ ext{T},i} - \langle \langle p_{ ext{T}} 
angle) (p_{ ext{T},j} - \langle \langle p_{ ext{T}} 
angle)}{\sum_{i 
eq j} w_i w_j} 
ight
angle_{ ext{evt}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{evt}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle = \left\langle \frac{\sum_{i 
eq j} w_i w_j (p_{ ext{T},i} - \langle \langle p_{ ext{T}} 
angle) (p_{ ext{T},j} - \langle \langle p_{ ext{T}} 
angle)}{\sum_{i 
eq j} w_i w_j} 
ight
angle_{ ext{evt}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle = \left\langle \frac{\sum_{i 
eq j} w_i w_j (p_{ ext{T},i} - \langle \langle p_{ ext{T}} 
angle) (p_{ ext{T},i} - \langle \langle p_{ ext{T}} 
angle)}{\sum_{i 
eq j} w_i w_j} 
ight
angle_{ ext{evt}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ ext{T}} \ & \left\langle \delta p_{ ext{T}} \delta p_{ ext{T}} 
ight
angle_{ e$$

# $v_n^2$ -[p<sub>T</sub>] correlation



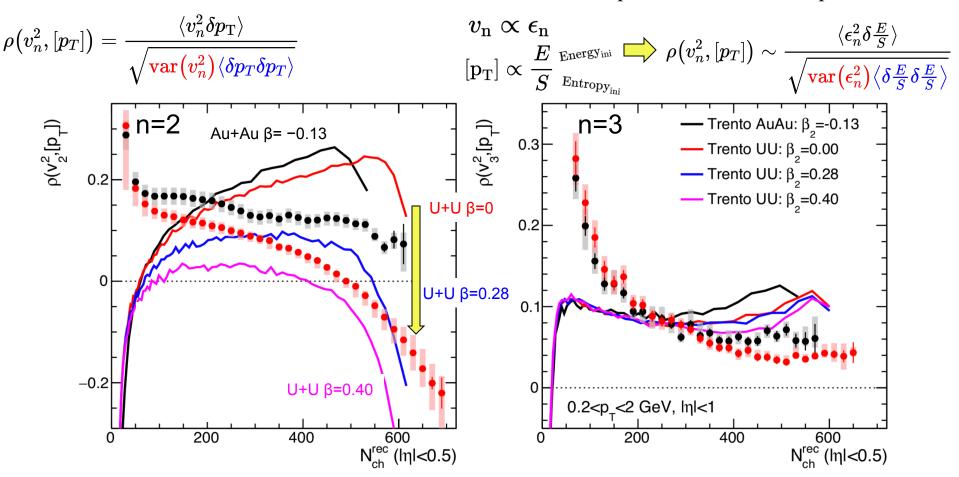
Clear sign change in UU around 8% centrality Au+Au remains positive

Similar between Au+Au and UU

#### Compare to Trento initial-state model

Trento: private calculation provided by Giuliano Giacalone, PRC102, 024901(2020), PRL124, 202301(2020)

#### Calculated via predictor with assumption

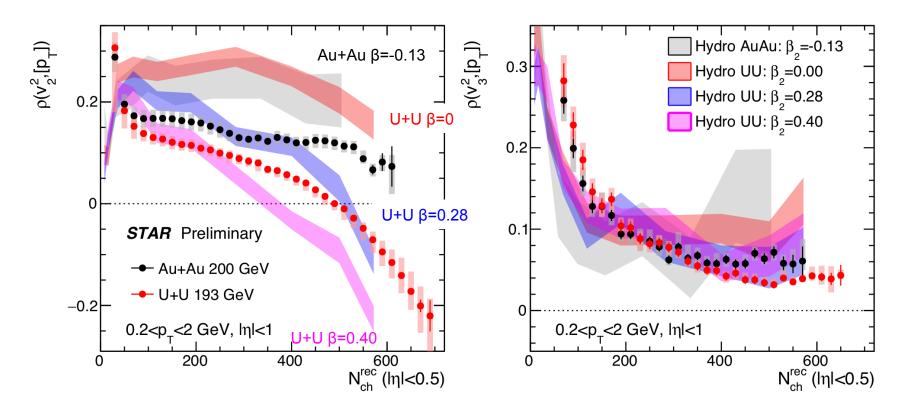


Trento does not describe data but shows an hierarchical  $\beta$  dependence for  $v_2$ - $p_T$  in U+U. Trento shows sign-change from Uranium deformation, prefers  $0.28 < \beta < 0.4$  Trento shows that  $v_3$ - $p_T$  correlations are insensitive to deformation.

# Compare to (boost-invariant) CGC+Hydro model<sup>5</sup>

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke Phys. Rev. C 102, 034905 (2020)

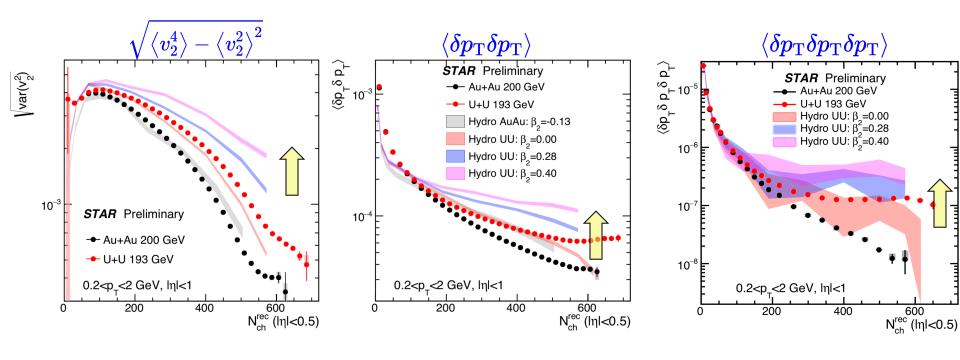
- Without deformation, CGC+hydro model over-predicts the  $\rho(v_2^2, p_T)$
- With increasing  $\beta_2$ , model could describe the trend of  $\rho(v_2^2, p_T)$ .
- Model shows that the  $\rho(v_3^2, p_T)$  are insensitive to  $\beta_2$ .



Sign-change of  $\rho(v_2^2, p_T)$  is due to deformation effect, model prefers a  $\beta_2$  value around 0.28< $\beta_2$ <0.4 with large uncertainty.

#### Can CGC+hydro model describe other observables?

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke Phys. Rev. C 102, 034905 (2020)



UU with  $\beta$ =0.28 overshoots the  $v_2$  and  $[p_T]$  fluctuations

Model cannot describe all observables simultaneously. Our data provide lot of inputs for improvement.

### Summary

- Azimuthal and radial flow → shape and size fluctuations
  - Inferred from fluctuations in  $v_n$ ,  $[p_T]$  and  $v_n$ - $[p_T]$  correlations

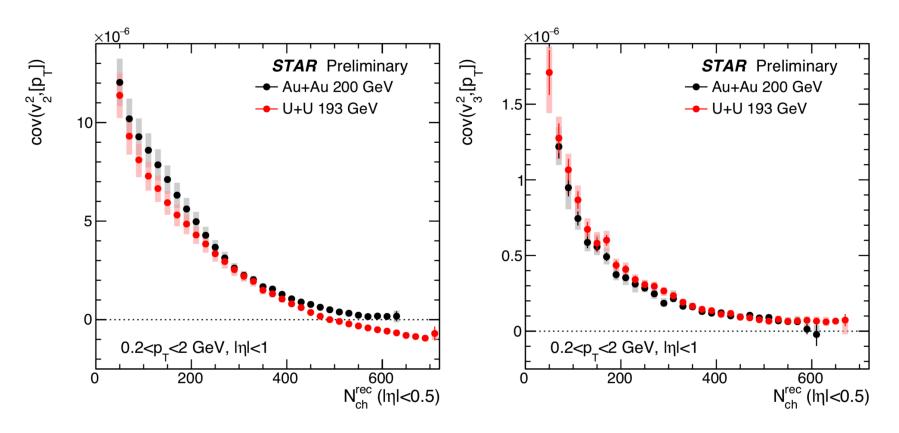
- These observables are sensitive to the quadrupole deformation parameter  $\beta_2$ 
  - Strategy: compare highly-deformed <sup>238</sup>U+<sup>238</sup>U to near-spherical <sup>197</sup>Au+<sup>197</sup>Au

$$ho(r, heta) = rac{
ho_0}{1 + e^{(r-R_0(1+ rac{oldsymbol{eta_2}}{2} Y_{20}( heta))/a}}$$

- Compared to Au+Au, results from U+U collisions show
  - Enhance  $v_2$ ,  $[p_T]$  and  $v_2$ - $[p_T]$  fluct., but little influence on  $v_3$  and  $v_3$ - $[p_T]$  fluct.
  - Effects largest in central collisions, but also observed in mid-central collisions.
    - → nuclear deformation influences collisions over a wide centrality range.
- Qualitatively described by IS model & IS+hydro model, but not quantitatively.
  - Data prefers a quadrupole deformation of  $0.28 \lesssim \beta_2 \lesssim 0.40$  with large uncertainty
  - Data can improve model tuning and provide new ways to probe nuclear structure.

#### Additional materials

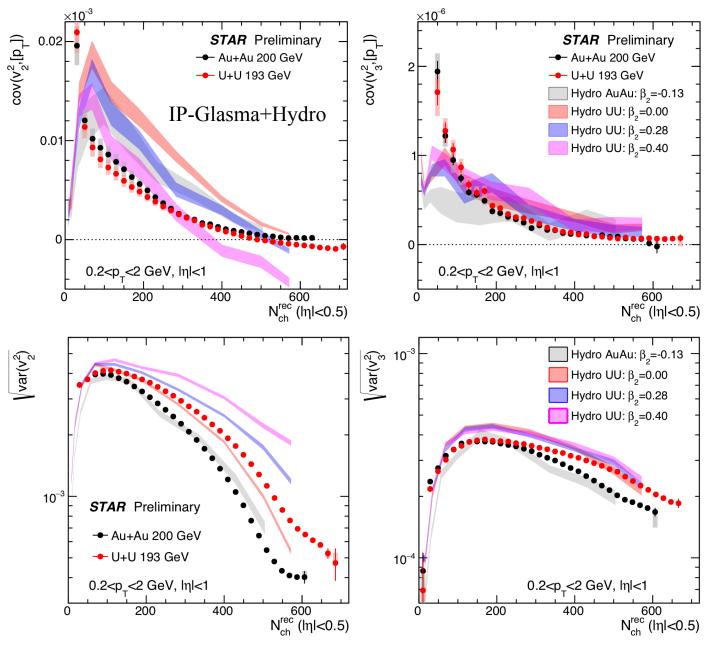
# Covariance: $\langle v_n^2 \delta p_T \rangle$



 $\langle v_2^2 \delta p_T \rangle$ : Difference in low and high  $N_{ch}$ 

 $< v_3^2 \delta p_T >:$  common scaling with  $N_{ch}$ 

# Hydro description for $\langle v_n^2 \delta p_T \rangle$ and $v_n$



### p<sub>T</sub> dependence



- Increase at low  $N_{ch}$  and decrease at high  $N_{ch}$ : more significant sign change
- Similar p<sub>T</sub> dependence also seen in hydro model.

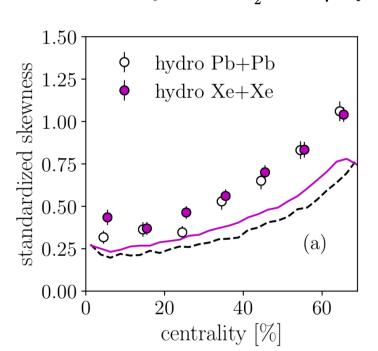
### [p<sub>T</sub>] skewness: hydro prediction

Quantify with normalized quantities

G Giacalone, F.Gardim, J.Noronha-Hostler, J.Ollitrault 2004.09799

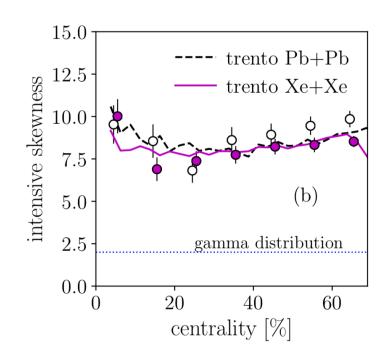
#### Standard skewness

$$\gamma_{p_t} \equiv rac{\langle \Delta p_i \Delta p_j \Delta p_k \rangle}{\langle \Delta p_i \Delta p_j \rangle^{3/2}} \sim rac{C_3}{C_2^{3/2}} \propto rac{1}{\sqrt{N_{
m part}}}$$



#### Intensive skewness

$$\Gamma_{p_t} \equiv \frac{\left\langle \Delta p_i \Delta p_j \Delta p_k \right\rangle \left\langle \left\langle p_t \right\rangle \right\rangle}{\left\langle \Delta p_i \Delta p_j \right\rangle^2} \sim \frac{C_3/C_1}{\left(C_2/C_1\right)^2} \sim \text{const}$$



Hydro calculation (points) can be approximated by initial-state predictor (lines):  $[p_T] \propto \frac{Energy_{ini}}{Entropy_{ini}} \sim \frac{1}{R}$