

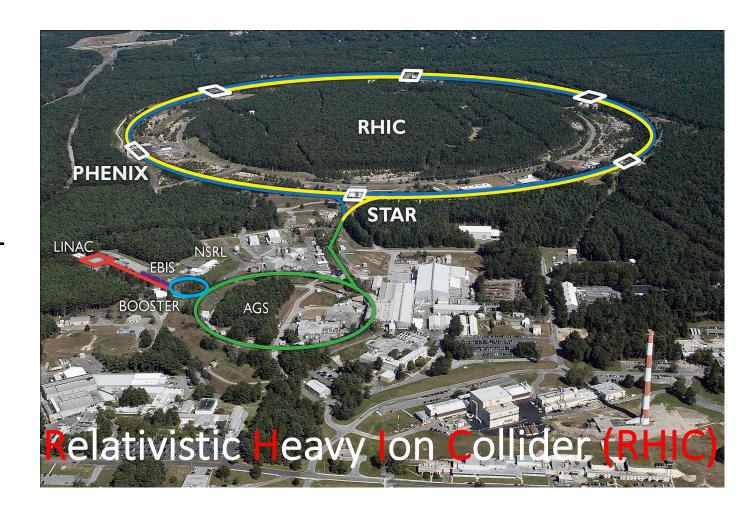
The VIth International Conference on the INITIAL STAGES

OF HIGH-ENERGY NUCLEAR

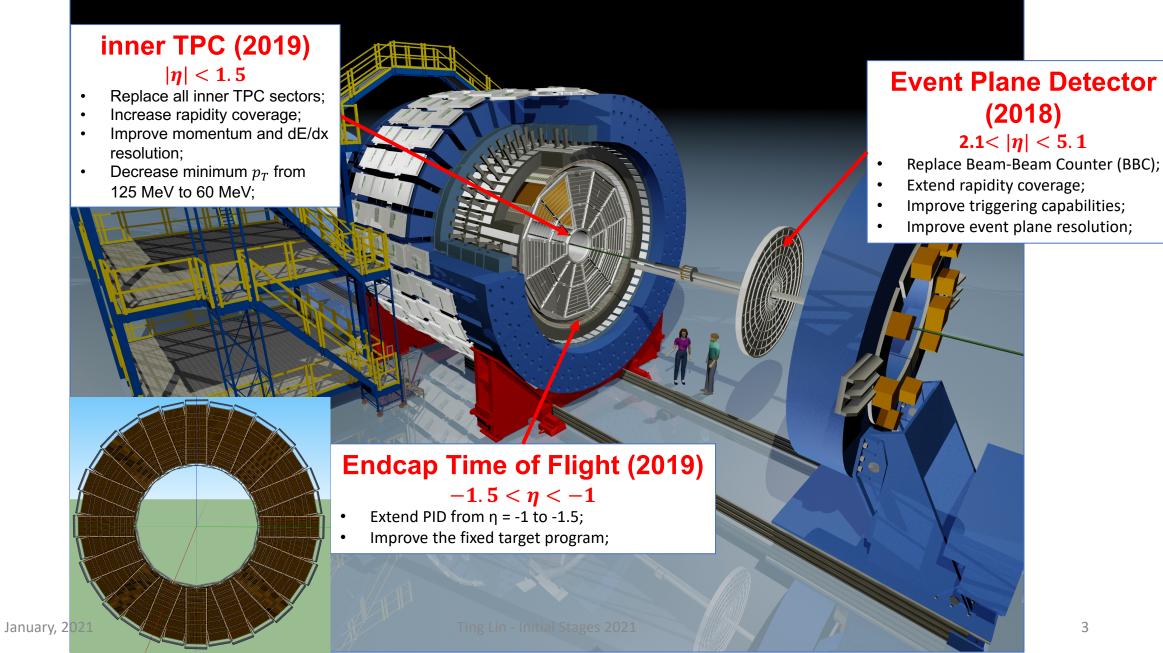
COLLISIONS

STAR Heavy Ion and Cold QCD program for 2021+ runs

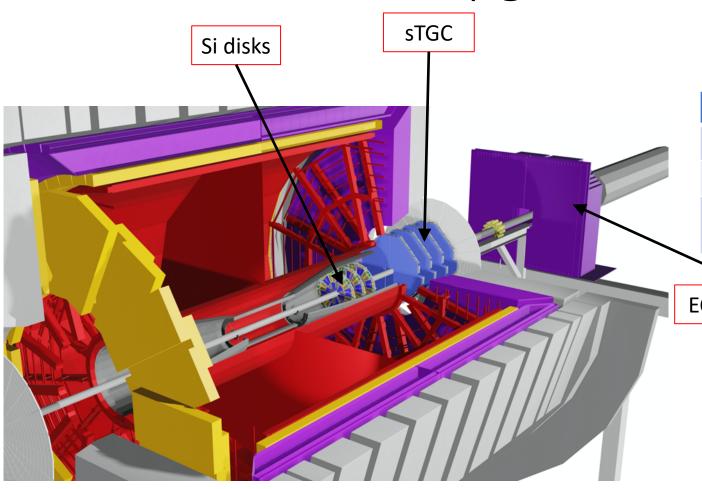
Ting Lin, for STAR Collaboration
Texas A&M University



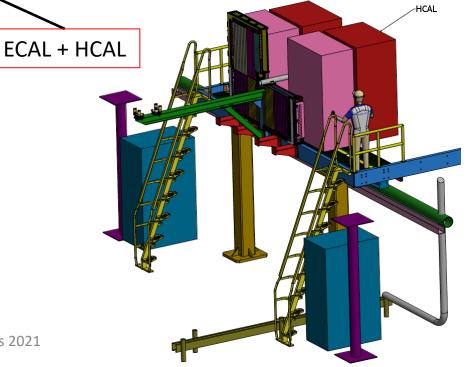
Supported in part by



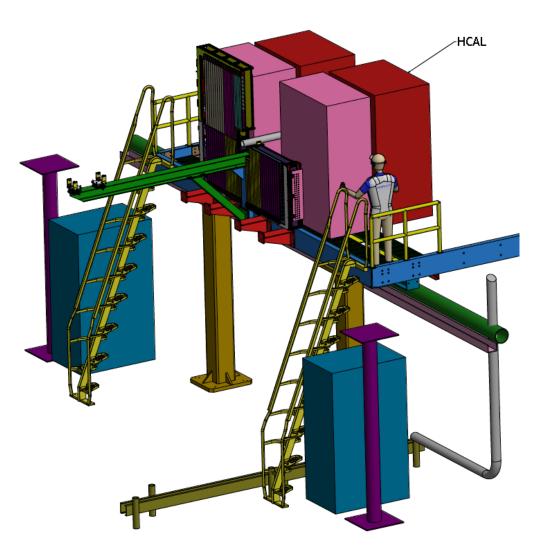
Outline:


- STAR Upgrades
 - Upgrades for BES-II
 - Forward Upgrades
- Heavy Ion Physics for 2021+
- Cold QCD Physics for 2021+
- Summary

STAR Detector Upgrades for BES-II



STAR Forward Upgrade Ongoing:



- At $2.5 < \eta < 4$
 - Si disks + Small Thin Gap Chambers (STGC) for tracking;
 - Electromagnetic and hadronic calorimeters;

Detector	p+p and p+A	A+A
ECal	\sim 10%/ \sqrt{E}	~20%/ \sqrt{E}
HCal	$^{\sim}50\%/\sqrt{E}$ + 10%	
Tracking	Charge separation Photon suppression	$0.2 < p_T < 2 \; {\rm GeV/c},$ with 20-30% $1/p_T$

STAR Forward Upgrade: ECal & HCal

Location: 7 m from the IP, at $2.5 < \eta < 4$

Readout: SiPMs

- Used in Trigger
- > Split in 2 movable halves inside and outside of ring
- Slightly projective

ECal:

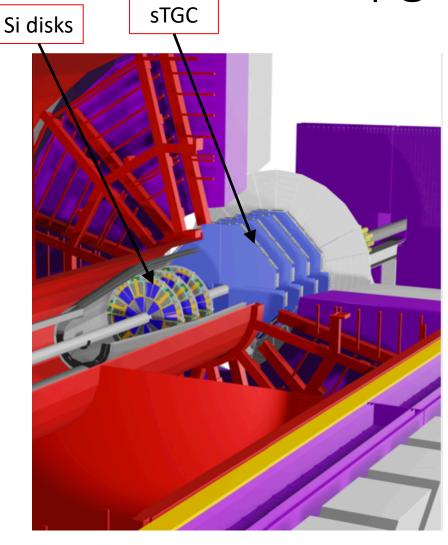
- > Reuse PHENIX PbSc calorimeter with new readout;
- \rightarrow On front face \rightarrow 1496 channel;
 - Tower size: $5.52 \times 5.52 \times 33$ cm³
 - 66 sampling cells with 1.5 mm Pb
 - 4 mm Sc & Wavelength shifting fibers

HCal:

- > Fe/Sc (20mm/3mm) sandwich;
- > 520 channels in total;
- ightharpoonup Tower size $10 \times 10 \times 84$ cm³
 - In close collaboration with EIC R&D

Preshower

Use EPD as preshower;


STAR Forward Upgrade: ECal & HCal

STAR Forward Upgrade: Silicon and sTGC

3 Silicon disks: at 146, 160, and 173 cm from IP Built on successful experience with STAR IST

- Single-sided double-metal mini-strip sensors
 - Granularity: fine in ϕ and coarse in R
 - Si from Hamamatsu
- ➤ Frontend chips: APV25-S1 → IST all in hand
- ➤ Material budget: ~1.5% per disk
- Reuse
 - IST DAQ system for FTS
 - IST cooling system

4 sTGC disks: at 307, 325, 343 and 361 cm from IP Inside Magnet pole tip opening:

- Inhomogeneous magnetic field
- ➤ 4 quadrants double sided sTGC → 1 layer
 - Diagonal strips to break ambiguities in the sTGC
- Position resolution: ~200 μm
- ➤ Material budget: ~0.5% per layer,
- Readout: based on VMM-chips
 - following ATLAS design

STAR Forward Upgrade: Silicon and sTGC

The 2021+ Physics program

Mid-rapidity $-1.5 < \eta < 1.5$

Forward-rapidity $2.5 < \eta < 4$

A+A

Beam:

FXT & 7.7 GeV: Au+Au (2021) 200 GeV: Au+Au (2023/25) 200 GeV: O+O (2021)

Physics Topics:

- ➤ Complete BES-II program:
- Elliptic flow;
- Chiral magnetic effect;
- Azimuthal femtoscopy;
- Net proton kurtosis;
- Dilepton
- ..
- Origin of small system collectivity via O+O;
- Exploring the Nuclear Equation-of-State (EoS)
- Exploring the Microstructure of the QGP

$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$ & $\mathbf{p}^{\uparrow}+\mathbf{A}$

Beam:

500 GeV: p+p (2022)

200 GeV: p+p and p+A (2024)

Physics Topics:

Improve statistical precision:

- ➤ Sivers effect in dijet and W/Z production;
- ➤ Collins effect for hadrons in jets;
- > Transversity and IFF
- ➤ Diffractive studies for spatial imaging of nucleon
- ightharpoonup Measurement of GPD E_g through UPC J/ Ψ
- ➤ Nuclear PDF and fragmentation function;

A+A

Beam:

200 GeV: Au+Au (2023/25)

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to η~4;
- Constrain longitudinal structure of initial state;
- ➤ Global vorticity transfer:
- Rapidity dependence of Λ,
 Ξ, Ω polarization at STAR

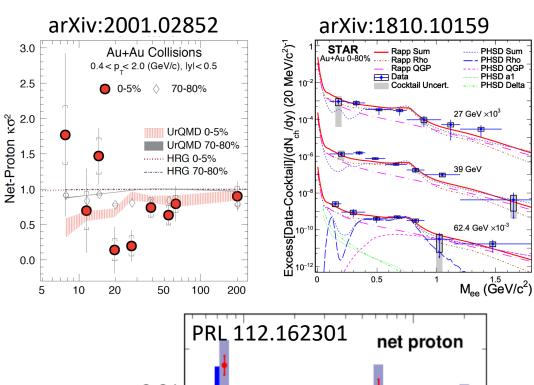
$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$ & $\mathbf{p}^{\uparrow}+\mathbf{A}$

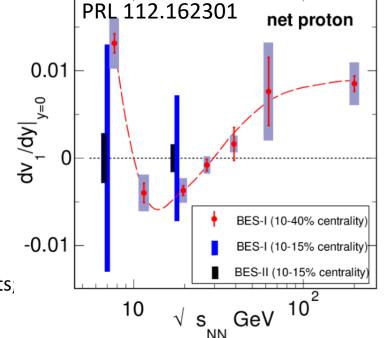
Beam:

500 GeV: p+p (2022)

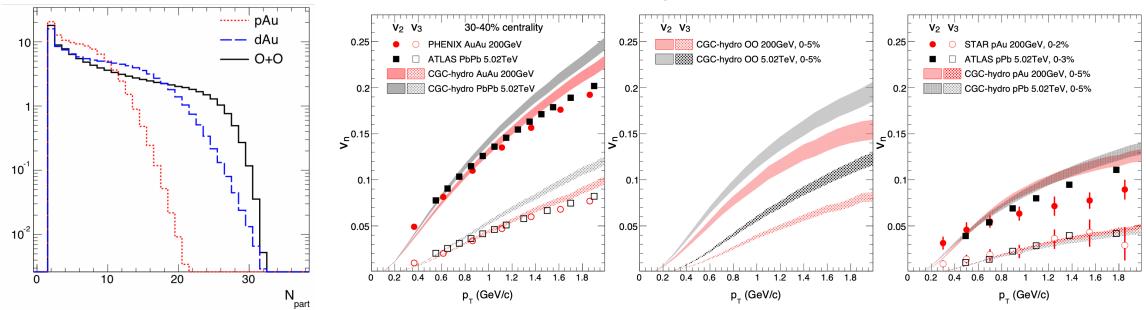
200 GeV: p+p and p+A (2024)

Physics Topics:

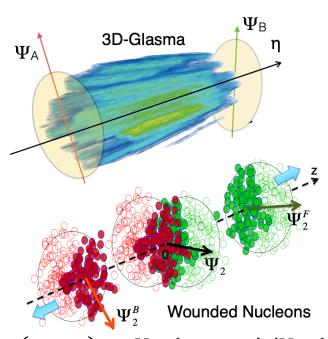

- > TMD measurements at high x
- Transversity, Collins;
- Sivers through DY and jets
- UPC J/Ψ GPD at forward rapidity;
- Nuclear PDFs and FF:
- R_{pA} for direct photons & DY, and hadrons
- Gluon Saturation through dihadrons, γ-Jets, di-jets

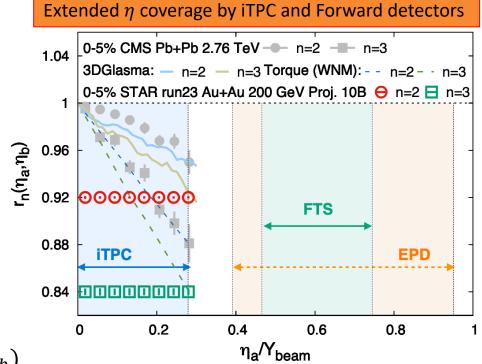

All of these measurements are critical to the scientific success of EIC to test universality and factorization

BES-II Progress:


Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Run Time	Number Events	Date
(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)	Collected
13.5	27	156	24 days	(560 M)	Run-18
9.8	19.6	206	36 days	400 M (582 M)	Run-19
7.3	14.6	262	60 days	300 M (324 M)	Run-19
5.75	11.5	316	54 days	230 M (235 M)	Run-20
4.59	9.2	373	102 days	$160 \text{ M} (162 \text{ M})^1$	Run-20+20b
31.2	7.7 (FXT)	420	$0.5+1.1~\mathrm{days}$	100 M (50 M+112 M)	Run-19+20
19.5	6.2 (FXT)	487	1.4 days	100 M (118 M)	Run-20
13.5	5.2 (FXT)	541	$1.0 \mathrm{day}$	100 M (103 M)	Run-20
9.8	4.5 (FXT)	589	$0.9 \mathrm{days}$	100 M (108 M)	Run-20
7.3	3.9 (FXT)	633	1.1 days	100 M (117 M)	Run-20
5.75	3.5 (FXT)	666	$0.9 \mathrm{days}$	100 M (116 M)	Run-20
4.59	3.2 (FXT)	699	2.0 days	100 M (200 M)	Run-19
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)	Run-18
3.85	7.7	420	11-20 weeks	100 M	Run-21 ²

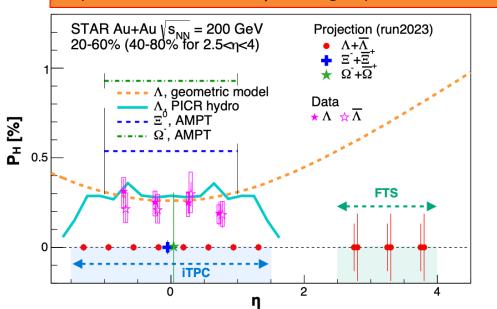
- Collecting 7.7 GeV data in 2021 to finish the BES-II program;
- 7.7 GeV is the essential bridge between Collider and FXT data;
- Hints of features at 7.7 GeV in several studies from BES-I;
- The planned Run-21 FXT measurements at $\sqrt{s_{NN}}$ = 3 GeV with the iTPC and eTOF give access to protons higher moment, precision ϕ , hyper-nuclei, and dilepton measurements;
- FXT data combined with collider data probes nuclear stopping.

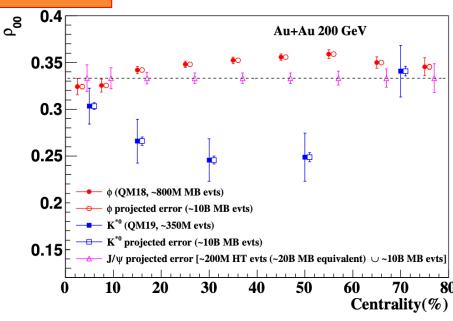



Small System Run: O+O at $\sqrt{s_{NN}}$ = 200 GeV

- Prediction of different energy dependence for symmetric and asymmetric systems;
- Small symmetric system with similar N_{part} to p/d+Au, but different nucleon/sub-nucleon fluctuations;
- Analyzing power for 2k-particle cumulants $v_n\{2k\}$ scales with $N_{events} \times N_{part}^{2k}$; much less running time needed than for smaller nuclei;

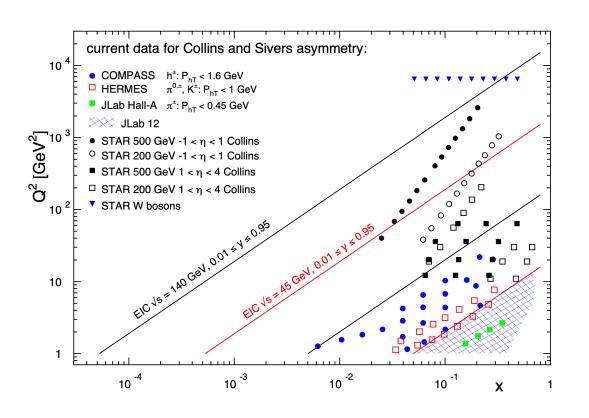
Constrain Longitudinal Structure of Initial State



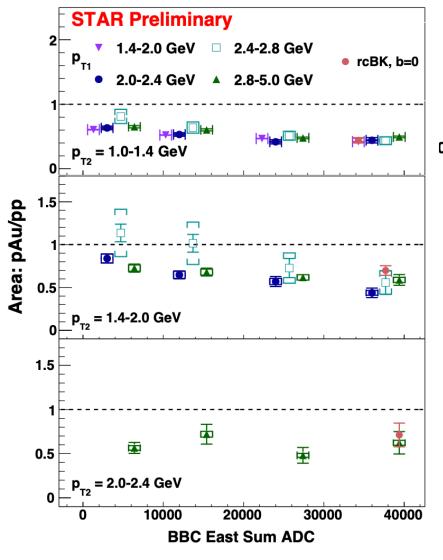

 $r_n(\eta_a, \eta_b) = V_{n\Delta}(-\eta_a, \eta_b)/V_{n\Delta}(\eta_a, \eta_b)$

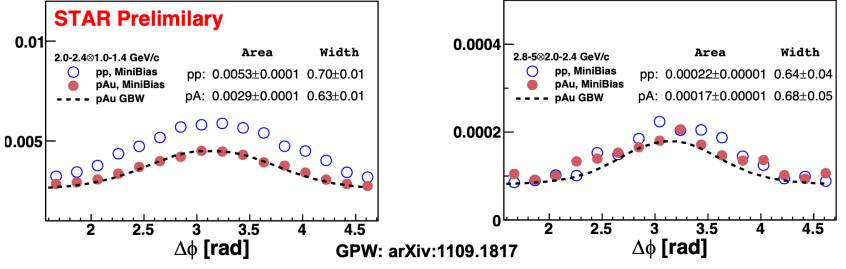
- $V_{n\Delta}(\eta_a, \eta_b)$ is the Fourier coefficient calculated with pairs of particles in different η regions;
- $r_n(\eta_a, \eta_b)$ sensitive to different initial state inputs:
 - 3D-Glasma model: weaker decorrelation, describes CMS r_2 but not r_3
 - Wounded nucleon model: stronger decorrelation than data
- Precise measurement of r_n over a wide rapidity window will provide a stringent constraint:
 - Pin down the nature of the 3-dimensional initial state of heavy ion collisions;
 - Constrain different models of QCD from colliding nuclei;

Global Vorticity Transfer


Improved PID, extended η coverage by iTPC and Forward detectors

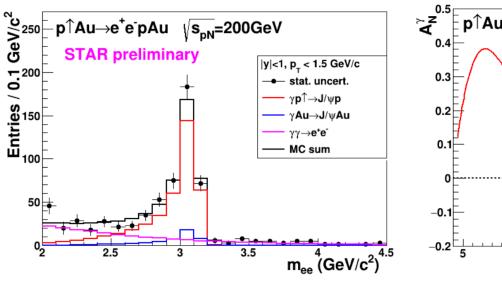
- How exactly is the global vorticity dynamically transferred to the fluid?
- How is the local thermal vorticity of the fluid transferred to the spin angular momentum of the produced particles during the process of hadronization and decay?
 - Rapidity dependence of Λ , Ξ , Ω P_H at STAR, probe the nature of global vorticity transfer: Initial geometry and local thermal vorticity + hydro predict opposite trends.
- Can we reconcile P_H with vector meson spin alignment ρ_{00} ? Strong force field effect?
 - Precise measurements of ρ_{00} of K*, ϕ , J/ ψ .

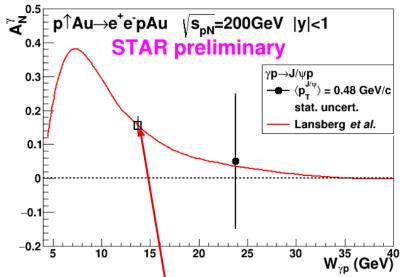

Cold QCD Program:

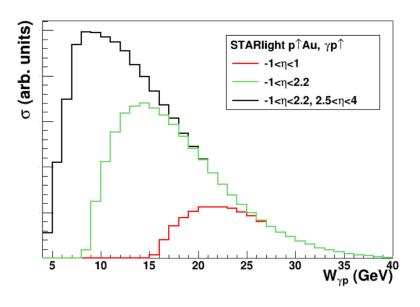


\sqrt{s} (GeV)	Species	Luminosity	Year
500	$p^{\uparrow}+p^{\uparrow}$	400 pb ⁻¹	2022
200	$p^{\uparrow}+p^{\uparrow}$	235 pb ⁻¹	2024
200	p [↑] +Au	1.3 pb^{-1}	2024

- Kinematic coverage for 200 and 500 GeV p+p at STAR is 0.005<x<0.5;
- Provides best overlap with the x- Q^2 coverage of EIC;
- Precise factorization and universality tests;
- Overlapping x coverage enables detailed evolution studies;

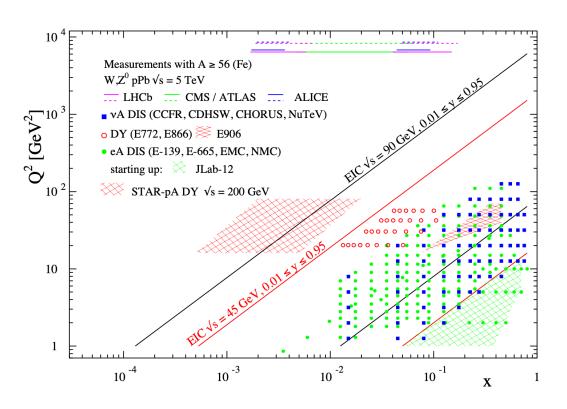

Gluon Saturation

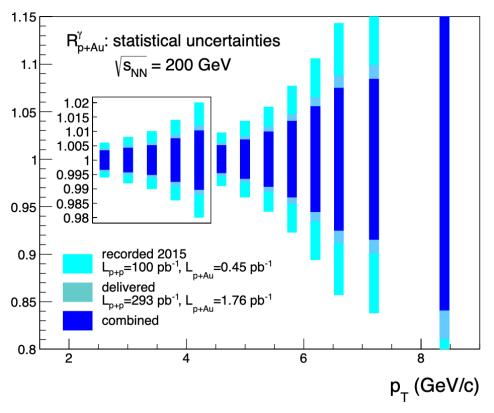




- Forward rapidity at STAR provides an unique opportunity to probe high gluon densities in p+Au collisions;
- STAR Forward upgrades characterize non-linear gluon effects through charged di-hadrons, γ -jet, di-jets;

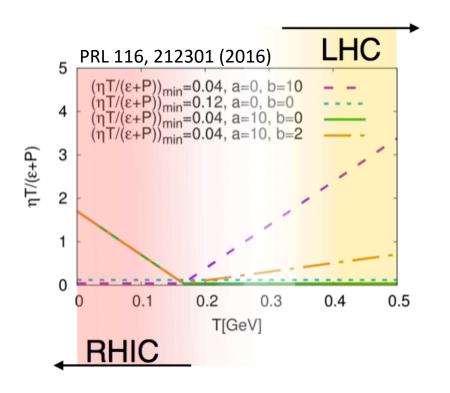
Generalized Parton Distribution Function

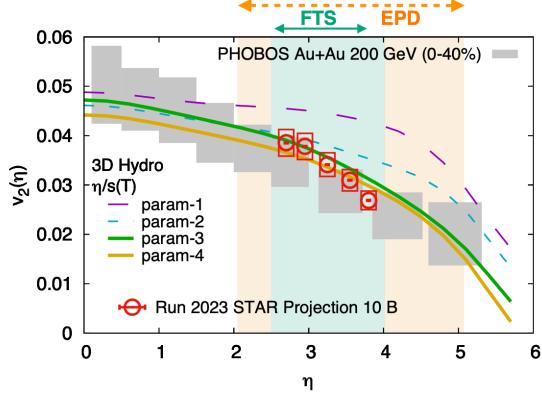




- Exclusive J/ ψ TSSA measurement in UPC;
- Access GPD E_g for gluons, sensitive to spin-orbit correlation;
- iTPC and forward detectors will enable a high-impact measurement
 - A factor of 9-10 more data combining iTPC and forward upgrades, expected statistical error 0.02 for $\langle W_{\gamma p} \rangle$ = 14 GeV;

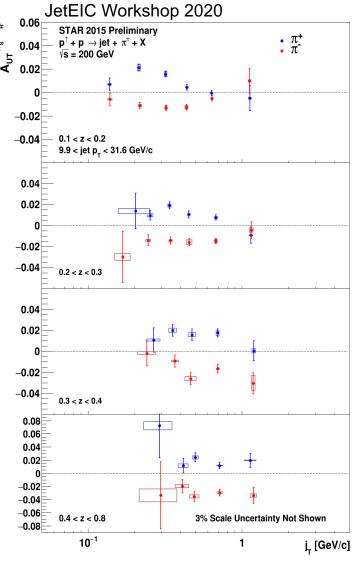
Nuclear PDF

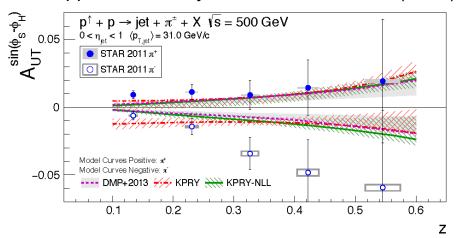

- Direct photon measurement: constrain nuclear gluon distribution in a broad x range;
- Drell-Yan: constrain nuclear sea quark distribution in a broad x range;
- Contribute to a stringent test of the universality of nuclear PDFs when combined with data from EIC;

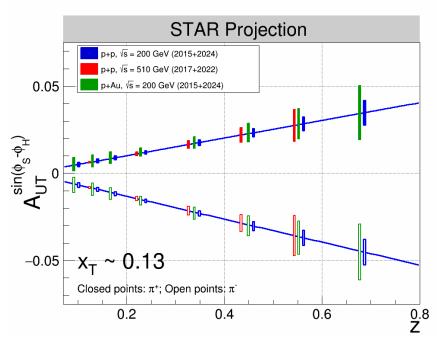

Summary

- The STAR BES-II upgrades have been running very well since 2019;
- The Forward Upgrade is progressing very well, will be fully ready in 2022;
- These upgrades will substantially extend STAR's kinematic reach and further enhance its particle identification capabilities;
- The combination of the existing and ongoing detector upgrades enables a rich and compelling scientific program in the next few years.

Back Up


Constrain Temperature Dependence of Viscosity




- The rapidity dependence of the flow measurement is sensitive to $\eta/s(T)$;
- Lower beam energy at RHIC provides stronger variations of the temperature with rapidity;
- The BES-II and the forward upgrade of STAR will provide precise estimations of different azimuthal correlation observables;

Collins Effect

pp500GeV: Phys. Rev. D 97, 032004 (2018)

- Collins effect combines the collinear quark transversity in the proton with the TMD dependent Collins fragmentation function;
- Precision measurements at both energies probe TMD evolution and provide important cross-checks and essential $x-Q^2$ overlap with EIC;
- Collins effect in p+Au will provide an alternative universality test and a unique probe of the spin dependence of hadronization in cold nuclear matter;