

Measurement of $\gamma\gamma \rightarrow \mu^+\mu^-$ Pairs in non-ultra peripheral Pb+Pb Collisions with the ATLAS Detector

Ben Gilbert
For the ATLAS Collaboration

Photoproduction in Pb+Pb Collisions

• The intense electromagnetic fields surrounding Lead ions in heavy ion collisions provide a flux of quasi-real photons for $\gamma\gamma$ processes.

Photoproduction in Pb+Pb Collisions

- The intense electromagnetic fields surrounding Lead ions in heavy ion collisions provide a flux of quasi-real photons for $\gamma\gamma$ processes.
- These photoproduction processes studied in Ultra-Peripheral Collisions (UPCs) are also present in hadronic Pb+Pb collisions.

Photoproduction in Pb+Pb Collisions

- The intense electromagnetic fields surrounding Lead ions in heavy ion collisions provide a flux of quasi-real photons for $\gamma\gamma$ processes.
- These photoproduction processes studied in Ultra-Peripheral Collisions (UPCs) are also present in hadronic Pb+Pb collisions.
- Dimuons produced via γγ scattering could provide a useful electromagnetic probe of the Quark-Gluon Plasma.

Main Observables

- The primary background for this analysis is muon pairs produced via decays of heavy flavor quarks, which is subtracted via a template fitting procedure.
- After subtraction, 2 main variables are used to describe the relative deflection the muons:
 - Acoplanarity -- Angular deflection of the dimuon pair: $\alpha \equiv 1 |\Delta \phi|/\pi$.
 - $\sim k_{\perp}$ -- Transverse momentum deflection of the pair: $k_{\perp} \equiv (p_{\rm T}_1 + p_{\rm T}_2) |(\pi \Delta \phi)|/2$

- The shape of the k_⊥ distribution is independent of p_T, while the α distribution is p_T-independent.
- Since it incorporates p_T -dependent effects, k_L is our preferred variable.

New Behavior with Run 2 Data

- With the inclusion of LHC Run 2 data, this analysis is now sensitive to a non-zero peak position not observed in previous measurements.
 - \circ The UPC data matches StarLight predictions well, but this depletion at small k_{\perp} is not predicted in the Monte Carlo.
 - Several recent theoretical predictions offer explanations for the non-zero peak.
 - QED-Based interference effects (Zha, Brandenburg, Tang, Xu): https://doi.org/10.1016/j.physletb.2019.135089
 - Generalized EPA (Klein, Mueller, Xiao, Yuan): https://arxiv.org/abs/2003.02947
- The peak position increases from 0 in the UPC to being largest in the most central collisions.

Central

UPC

Fitting the Peak Position

- In order to quantitatively understand the non-zero peak of the k_{\perp} distribution as a function of centrality, a fitting procedure is applied:
 - First, the UPC bin is fitted with the sum of 2 Gaussians peaked at 0.
 - Next, this fit is symmetrized about 0 to get the "UPC Template".
 - \circ Finally, the UPC Template is fitted with 2 free parameters, a shift and a constant offset, to the measured k_{\perp} distribution.
- This fit matches the actual data well and provides an effective characterization of the shift in the distribution as a function of centrality.

- ATLAS measured non-exclusive dimuon photoproduction in Pb+Pb collisions at 5.02 TeV.
 - The most probable k_{\perp} value measured increases to 36 ± 1 (stat + syst) MeV in the 0-5% interval from 19 ± 1 (stat + syst) MeV in the 70-80% interval and 0 for the UPC.
- Several theoretical predictions exist to explain this shift in the peak, but a more direct theory comparison is necessary in order to distinguish between them.

- For a more detailed description of the full analysis, the original CONF note is available at https://cds.cern.ch/record/2698293
- Thank you for your attention!

