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Two potential contribution to final stage momentum space eccentricity  :

Initial momentum space eccentricity generated by quantum fluctuations  

Initial position space eccentricity . (the conversion of  into  due to 
hydrodynamic has been studied extensively.)

This work: the fate of   based on kinetic theory.
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We use kinetic equation under isotropization time approximation (ITA) to describe 
the evolution of single particle distribution of gluons.

Set-up
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Kurkela-Wiedemann-Wu EPJC 19’ 

Initial condition: ξ parametrizes the initial an-isotropy. 
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F(ϕ, cos θ) ≡
1

2π2 ∫ dp p3 f(ϕ, cos θ, p)

By solving ITA kinetic equation numerically, we can watch the evolution of  .Vm

Assuming QGP can be described by kinetic theory and consider the Fourier 
decomposition of particle transverse energy density distribution at mid-rapidity.
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Attractor behavior for the evolution of Vm
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Consider the change rate of  (unnormalized) : 

The change rate  is insensitive to initial an-isotropy ξ, generalizing the 
conventional notion of attractor behavior.   

 is related to the change rate of energy density, i.e. . The 
insensitivity of  and hence that of  to ξ  is known as the “attractor 
behavior”.

When  ,  , meaning  evolves as slow as energy density. 
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The evolution of the normalized harmonics
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Consider ratio , which is a proxy to momentum space eccentricity .

We find  changes slowly up to 

Usual 2nd order hydrodynamic eqns do not describe the evolution of   properly.
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Primordial slow modes and the evolution of Vm
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Based on “adiabatic analysis” (see Brewer’s plenary talk 
this Friday for more details), we find for each  , 
there is an associated slow mode at early times.

Those “primordial slow modes” represent specific 
shapes in phase space.

  Those “primordial slow modes” are important at 
early stages as far as the typical gradient is smaller 
than the gap, i.e. , 

Vm
} Ef

ΔE ∼ c0τ−1

 slow modes, Nm Es = τ−1

 k /ΔE < 1

The modes associated with  are not slow modes in hydrodynamics. The 
descriptions of  primordial slow modes might be important for small systems. 

m ≥ 2
m ≥ 2



Summary
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We analyzed the evolution of momentum space eccentricity  in far-from-
equilibrium QGP based on kinetic theory.

At early stages ,  changes approximately at the same rate as that of energy 
density.

The memory of initial momentum space eccentricity would last much longer than 
hydrodynamics analysis. 

A dynamical model which describes the evolution of momentum space eccentricity 
might be important for the study of small colliding systems.

Vm

τ ≤ τR Vm



Back-up
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Shapes of “equal-probability surface” as collective modes
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Define “equal-probability surface”: .

The primordial slow mode in m=0 sector can be visualized as to 
a highly anisotropic “equal-probability surface”

pn f( ⃗p ) = const

(Figs from Kurkela 
et al, PRC 19’) 

Primordial slow modes: some specific shapes of “equal-probability surface” which 
evolve relative slowly in fast longitudinal expansion environment.

C.f. “Chiral Metric Hydrodynamics” where the shapes of Fermi surface are treated  as 
slow collective modes

D. Son, 19



Moments
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characterizing phase space distribution

Ln,±m,l (τ, ⃗x ) ≡ ∫ ⃗p
pn−3 (Yl,m(θ, ϕ) ± Yl,−m(θ, ϕ)) f( ⃗p ; τ, ⃗x ) ,

  can be related to  (mass dimension ), 

 energy density  ( ) and longitudinal momentum density   
( )

: transverse momentum density  ( )

m=2 : eccentricity of the distribution.

Tμν n = 4

m = 0 : T00 l = 0 Tz0

l = 1

m = ± 1 Tx0, Ty0 l = 1

Define a larger vector ψ = (Ln,±m,l , …, ) f( ⃗x , τ)

Studying the evolution of  is equivalent to studying the evolution of 
distribution function . 

ψ



The evolution equation for ψ
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Considering the class of collision integrals that equation for ψ can be recast into the 
form:

∂τψ = − (HD +
1
τ

HF) ψ −  collisions .

∂τψ = − (HD +
1
τ

HF + HC) ψ = − H(τ) ψ .

∂τ f( ⃗p ; τ, ⃗x ) = − [ ̂p ⋅
∂

∂ ⃗x
+

pz

τ
∂pz ] f( ⃗p ; τ, ⃗x ) − Ĉ[ f ]

decomposition



The instantaneous eigenvalue of non-Hermitian matrix  can be complex. 
(  because of expansion and collision), 

Slow modes: assuming H has a collection of low-lying instantaneous eigenmodes 
which are gapped from other modes. 

The dynamics should be dominated by those slow modes under certain conditions.

H(τ)
ReE ≥ 0

H(τ)ϕn(τ) = En(y)ϕn(τ)

Slow modes
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Late time limit and hydro. modes
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Each slow mode contains only one non-zero components 
associated with conserved densit ies. They are 
hydrodynamics modes. 

(0,…, T00,0,…) (0,…, T0i,0,…)
Non-hydro. modes are gapped from hydro. modes by  . 

The corrections due to finite expansion rate and gradient: expressible as an 
expansion in  (match to the gradient expansion).

1/τC

k /ΔE, ω/ΔE

 has four independent slow modes with  In long time and small gradient 
limit.
H Es = 0

(HF +
1
τ

HD + HC) → HC } Ef

ΔE ∼ τ−1
C

4 slow modes, Es = 0



Primordial slow modes
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In early time limit , free-streaming Hamiltonian dominatesτ ≪ τC

( 1
τ

HF + HD + HC) →
1
τ

HF

: one slow mode per spin (m)

Even under longitudinal parity,

Gapped from other modes by  . 

NB:  is even under longitudinal parity and 
commutes with 

HF

1/τ

HF
∂ϕ

} Ef

ΔE ∼ c0τ−1

 slow modes, Nm Es = τ−1



The dominance of primordial slow modes
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The evolution will be dominated by the primordial 
slow modes   whenϕP

s

The contribution from “faster mode” will decay as power-law in τ:

bf(τ)
bs(τ)

∼ e− ∫ dτ′ Δ(τ′ ) = ( τ
τI )

−c0

,ψ(τ) = ∑
s

bs(τ)ϕs + ∑
f

bf(τ)ϕj

power-law decay of fast modes ⇒ insensitivity to initial condition (attractor behavior).

For weakly coupled QGP in high energy density limit,  and  is separated 
parametrically

τI τC

τI ∼ Q−1
s ≪ τC ∼ α−x

s Q−1
s , x > 0

} Ef

ΔE ∼ c0τ−1

 slow modes, Nm Es = τ−1τI ≪ τ ≪ τC

see also Bin-Kurkela-Wiedermann-Wilke, PRL 19



Question
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Are  primordial slow modes related to hydro. modes?

The fate of higher spin ( ) primordial modes ?

m = 0, ± 1

m ≥ 2

} Ef

ΔE ∼ τ−1
C

4 slow modes, Es = 0

} Ef

ΔE ∼ c0τ−1

 slow modes, Nm Es = τ−1



Fate of primordial slow modes
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 primordial slow modes evolves to the corresponding hydro. modes

  Higher spin ( ) primordial modes undergo “mass-distinction” at some 
intermediate stage.

m = 0, ± 1

m ≥ 2



Finite gradient and m ≠ 0
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The discussion on adiabaticity is expected to be general.

To this point, one might expect that hydro. can be readily generalize to describe the 
evolution since far-from-equilibrium stages.

However, physics becomes much richer in the presence of gradient and  
modes

m > 0
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Finite gradient ( )k⊥ ≠ 0
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0.5τ/τC = 1τ/τC = 2τ/τC =

k⊥/ΔE

Re(Eτ)
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Strong mixture among slow modes.

Slow modes dominate when

  
k

ΔE
< 1

Brewer, Weiyao Ke, Li Yan and YY, in progress


