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IS2021 raison d'etre

What is the right way to model the early-time dynamics of the QGP?
How can we compare our models to experimental measurements?

Fluctuations in initial geometry at T = 1, 4, are encoded in observed
v,; has allowed us to better understand the spatial structure of the
fluctuating initial conditions generated in HIC.

How does pre-equilibrium evolution modify things?

Can we learn more detailed information about the initial conditions
from experiment? Can we “measure” T, initial chemical
composition (quarks vs gluon), and/or early-time LRF pressure
anisotropy?

How can we better understand high-multiplicity pp and pA collisions
which possess short lifetimes and are farther from equilibrium at
freeze-out?



Variety of probes

In AA collisions, soft-hadronic production (e.g. pions) occurs
at “late” times; part of the information about the initial state
is lost during the hydrodynamical evolution.

When studying initial state o " ®
physics hard probes are very AN

important
" o~

o high-energy jet suppression <o

o heavy quarkonium suppression Non-suitrum 0GP

o electromagnetic radiation

Semi-hard particle production
0<T <0.3fmlc

‘>
beam direction

Electromagnetic radiation is particularly appealing, since
these probes do not experience significant interactions after
their production.

How do we reliably compute non-equilibrium particle
production and transport from first principles QCD?




QGP momentum anisotropy cartoon

0.1-0.3 fm/c 1-3 fm/c ~ 5-9 fm/c
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Expansion rate is much faster
than the interaction time scale
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Enter the attractors

Work over the course of the last decade has shown that there exist three
dynamical attractors for the non-equilibrium dynamics of the QGP:

1.

M. Strickland

An early-time non-thermal attractor associated with Classical Yang-Mills
(CYM) evolution; never thermalizes and system generates ever growing

momentum anisotropy; however, can be used as IC for the next stage o
evolution

Berges, Boguslavski, Schlichting, Venugopalan, ...

A QCD effective kinetic theory (QCD EKT) attractor that can be matched
onto both the early-time CYM non-thermal and late-time hydrodynamical
attractors; numerical realization of bottom-up thermalization

Kurkela, Zhu, Keegan, Romatschke, van der Schee, Mazeliauskas, Almaalol, MS, Schlicting,
Du, Arnold, Moore, Yaffe, Baier, Mueller, Son, Schiff, ...

A “late time” universal dissipative hydrodynamical attractor

Heller, Spalinski, Romatschke, Kurkela, Svensson, Denicol, Noronha, MS, Almaalol, Martinez,
Brewer, Blaizot, Yan, ...



The exact RTA kinetic attractor

Assuming n/s = 0.2 and To = 500 MeV
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Collapsing the results to the attractor
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Loss of memory of initial conditions!

Heller and Spalinski, 1503.07514

Heller, Kurkela, Spalinski, Svensson 1609.04803 4
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The attractor concept

MS, Noronha, and Denicol, 1709.06644  0-5 fm/c 1.3 fm/c 4.9 fm/c
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The attractor concept

MS, Noronha, and Denicol, 1709.06644 1.3 fm/c 3.5fm/c
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How does this work in practice?
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How does this work in practice?
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Connectlng the dots using QCD EKT

‘Temperature' [GeV] at 0.2 fm/c

/ QCD Effective Kinetic Theory
L (QCD EKT)

Kurkela, Mazeliauskas, Paquet, Schlichting and Teaney,
arXiv:1805.01604, 1805.00961 (KgMP@ST)

* Includes elastic 2 <> 2 and inelastic 1 €<= 2 scatterings with LPM suppression
* Based on weak-coupling treatment (HTL quasiparticles)

b

0. f + % Vf =8, = — (Comalf] + Cralf])

Baier, Mueller, Schiff, and Son (2001) T—=<
Arnold, Moore, Yaffe (2003)

* Allows for high occupation numbers
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Evolution of energy density correlations in the Glasma
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Non-perturbative renormalization of the average color charge and multi-point
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Heavy quarks traversing glasma
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Kirill Boguslavski
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Jet momentum broadening in real-time lattice simulations of the glasma
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nuclear collisions

Soeren Schlichting
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New developments in QCD-based kinetic transport theory
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Adiabatic hydrodynamization
Jasmine Brewer
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Emergence of slow modes: the governing degrees of freedom in rapidly-
expanding quark--gluon plasma

Jasmine Brewer
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Non-equilibrium attractor in high-temperature QCD plasmas
Dekrayat Almaalol
poster/bullet talk
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Beyond hydrodynamics?

e Can the concept of a non-equilibrium attractor be
extended beyond the 14 degrees of freedom described

using the energy-momentum tensor, number density,
and diffusion current?

* In kinetic theory we describe things in terms of a one-
particle distribution function f(x,p) and the energy-
momentum tensor is obtained from low-order moments:

d>p

™ = /de“p”f(:C,p) dP:/(WE

 What about more general moments of f? Particularly
ones that are sensitive to higher momenta?

M. Strickland 16



Beyond hydrodynamics?

* For a conformal (massless) system it suffices to consider
MO ] = /dP (p-u)" (p-2)°" f(x,p)

* This encompasses the moments necessary to construct the
energy momentum tensor, e.g. below, and more

e = M2 = / dP (p-u)? f(r,w, pr) = T %

P; = MO = /dP (p-2)* f(r,w,pr) = T



Evidence for a QCD EKT attractor

D. Almaalol, A. Kurkela, and MS, PRL 125, 122302 (2020)

Numerical implementation of pure glue AMY effective kinetic theory (EKT)

Includes elastic gluon scattering and inelastic gluon splitting with LPM
suppression and detailed balance.

We use the “pure glue” EKT code of Kurkela and Zhu PRL 115, 182301 (2015)

250 x 2000 x 1 grid in momentum space (n, X Ng X )
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Evidence for a QCD EKT attractor

D. Almaalol, A. Kurkela, and MS, PRL 125, 122302 (2020)
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Is there an early-time attractor?

D. Almaalol, A. Kurkela, and MS, PRL 125, 122302 (2020)
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Varying initial anlsotropy and t,

IDE \/ ‘‘‘‘ 4 ...../... EKT evolution (RS)
" L _ EKT evolution (CGC)

RTA attractor
—~ vHydro attractor (i)
- — vHydro attractor (ii)
--— aHydro attractor
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Attractor seen in all
moments and is the
same for both types
of initial conditions.

For low order
moments, EKT QCD is
closer to EQ than RTA

and hydro predictions.

For high order
moments the
opposite is true.

Can be used to
constrain freeze-out f
(see poster and talk
by D. Almaalol)

Suggests that there is
an attractor for the
entire one-particle
distribution function!

21



Conclusions

Initial state of QGP is not in equilibrium.

In order to understand it and potentially measure
its properties we must understand non-
equilibrium dynamics and fold this together with,
e.g. electromagnetic production calculations.

Existence of attractors helps to simplify the
calculation: Leading-order approximation is to
flow along attractor.

Helps to remove ambiguities in the calculation.

Can also use attractors to test different
hydrodynamic approximations, both evolution
and freeze-out (see poster and talk by D.
Almaalol)




