Experimental evidence for saturation — a mini-review

Marco van Leeuwen
Nikhef, Utrecht University
Experimental evidence of saturation?

Q^2 evolution: gluon density

Gluon content of proton rises quickly with Q^2.

Something must ‘tame’ the gluons at low x non-linear evolution, gluon fusion?
Where do we expect saturation?

- Non-linear processes, gluon fusion expected to become important
 - At small $Q^2 < Q^2_s$
 - At small x, i.e. where Q_s is large enough
 - Effect sets in earlier in nuclei than in protons
- Most studies to date: compare nuclei to protons/neutrons

\[Q_s^2 \approx \frac{xG_A(x, Q^2)}{\pi R_A^2} \propto A^{1/3} x^{-\lambda} \]
Where do we expect saturation?

• Non-linear processes, gluon fusion expected to become important
 • At small $Q^2 < Q^2_s$
 • At small x, i.e. where Q_s is large enough
 • Effect sets in earlier in nuclei than in protons
• Most studies to date: compare nuclei to protons/neutrons

• Observables/measurements:
 • Inclusive production: forward, moderate to low p_T probes small x
 • Forward open charm: reach to smallest x in current LHC results
 • Direct photons: clean probe, but mostly measured at mid-rapidity, fairly high p_T
 • Electroweak bosons: both forward and mid-rapidity, large Q^2 —> Not discussed here
 • UPC J/ψ production: very small x, small Q^2
 • Two-particle correlations: look for mono-jet topology, multi-gluon recoil

\[Q_s^2 \approx \frac{xG_A(x, Q^2)}{\pi R_A^2} \propto A^{1/3} x^{-\lambda} \]
Evidence for saturation/shadowing from DIS: NMC data

DIS kinematics: small \(x \) is also small \(Q^2 \).

Small \(x \) reach depends on \(Q^2 \) cut-off.

Main evidence for shadowing/saturation from DIS concentrated at small \(Q^2 \).

EPPS16 PDF fit

- \(Q^2_{\text{min}} = 1.69 \text{ GeV}^2 \)

nNNPDF fit

- \(Q^2_{\text{min}} = 3.5 \text{ GeV}^2 \)

Evidence for saturation/shadowing from DIS: NMC data

NMC, Nucl. Phys. B441, 3

Experimental review of saturation, Initial Stages 2021
nPDF gluon densities at small x

Suppression of gluon density ‘shadowing’ from global fit; small-x driven by NMC data
Amount of suppression varies between fits
Large uncertainties over broad range $x < 10^{-2}$

EPPS16 gluon density in Pb nucleus

nPDF gluon densities at small x
Probing gluons with inclusive particle production
2-parton kinematics

Both outgoing partons at mid-rapidity

\[x_2 \approx x_1 \approx \frac{2p_T}{\sqrt{s}} \]

Both outgoing partons at forward rapidity

\[\hat{s} = x_1 x_2 s \approx (2p_T)^2 \]

\[x_1 \approx \frac{p_T}{\sqrt{s}} e^{-y} \]

One parton forward, one closer to mid-rap

\[\hat{s} = x_1 x_2 s \approx (2p_T)^2 \]

\[Q^2 = \hat{s} > (2p_T)^2 \]

Both incoming partons at moderate x

\[\hat{s} = x_1 x_2 s \approx (2p_T)^2 \]

Boosted configuration:

One small-x, one large-x parton

\[x_1 \approx x_2 \approx \frac{2p_T}{\sqrt{s}} \]

Large mass final state

Note: 2 to 2 scattering is LO kinematics; NLO processes add additional freedom/smearing.

Experimental review of saturation, Initial Stages 2021
RHIC forward particle suppression

- Nuclear modification factor R_{dAu}
 \[R_{dAu} = \frac{dN/dp_T|_{dAu}}{Ad\sigma/dp_T|_{pp}} \]

- Yield suppression $R_{dAu} < 1$ seen at RHIC
 - Low p_T: expect also N_{part} vs N_{coll} scaling
 - $p_T > 2$ GeV, $R_{dAu} \sim 0.8$

 Probes $x \sim 10^{-3}$

First hint of saturation?
⇒ Can we confirm this at LHC?

STAR: charged hadrons, π^0

BRAHMS: charged hadrons

Experiment review of saturation, Initial Stages 2021
RHIC and LHC for $x \sim 10^{-4}$

$x_2 \approx \frac{p_T}{\sqrt{s}} \left(e^{-y_3} + e^{-y_4} \right)$

Mid-rapidity at LHC \approx forward rapidity at RHIC

No sign of suppression at high $p_T > 2$ GeV
$p_T < 2$ GeV expect soft effects; N_{part} scaling

Enhancement for protons?
Open charm production vs rapidity at LHC

Backward rapidity: large x

Mid-rapidity

Forward rapidity: small x

\[R_{p\text{Pb}} \sim 1 \text{ at backward and mid-rapidity; below 1 at forward rapidity} \]

Suppression mainly at small-x compatible with nuclear PDFs (shadowing) and CGC calculations

CGC: Decloue et al, PRD 91, 114005
Open charm production at backward and forward rapidity

ALICE: Heavy flavour decay muons

Forward muons (ALICE) show similar trend, different normalisation:

\(R_{pPb} \approx 1 \) at forward (small-\(x \)), but enhancement in backward direction

(Note: measured \(p_T \) is from decay muon)
Final state effects in p-Pb collisions: ‘radial and elliptic flow’?

Q_{pPb} for charm, central and peripheral

ALICE Preliminary

p-Pb, $\sqrt{s_{NN}} = 5.02$ TeV

Prompt D mesons
Average D^0, D^+, D^{**}

-0.96 $< y_{cm} < 0.04$

0--10% ZN energy
60--100% ZN energy

Experimental review of saturation, Initial Stages 2021
Final state effects in p-Pb collisions: ‘radial and elliptic flow’?

Q_{pPb} for charm, central and peripheral

Ratio central/peripheral shows hint of flow-like ‘bump’

(Q$_{CP} > 1$ significance 1.5σ)

ALICE, PRL 122, 072301
Final state effects in p-Pb collisions: ‘radial and elliptic flow’?

Q_{pPb} for charm, central and peripheral

v_2 for heavy flavour electrons and muons

Ratio central/peripheral shows hint of flow-like ‘bump’
($Q_{CP} > 1$ significance 1.5σ)

Clear v_2-like modulations for HF decay muons and electrons strength of modulation smaller than for charged particles in p-Pb

Interesting physics, but a ‘nuisance effect’ for parton density studies…
PDF reweighting with charm: full NLO charm calculation

Eskola, Helenius et al, JHEP 05 (2020) 037

EPPS16 reweighting

nCTEQ15 reweighting

Forward charm data brings significant constraints; prefer shadowing with

\[R_g \sim 0.7 \text{ at } x < 5 \times 10^{-3} \ (Q^2 = 10 \text{ GeV}) \]
Q2 dependence

Charm reweighted PDFs show strong dependence on Q2

Probably a robust feature: DGLAP evolution

Can we test this experimentally? How low in Q2 do we trust the formalism?
Probing the proton PDFs with UPC

\(\gamma + p \rightarrow J/\psi + p \)

parton level: \(\gamma g \rightarrow c \bar{c} \)

Probes proton structure at \(x < 10^{-4} \); potential to constrain PDFs at small-\(x \)
UPC J/ψ production: Pb-Pb

UPC Pb-Pb probes
gluon density in nucleus

Measured cross section below
free-nucleon ‘impulse approximation’

Indicates shadowing/saturation at Q ≈ 1/2 m_{J/ψ}
Summary so far

• Signs of suppression of inclusive particle production in small-\(x\) regime
 • RHIC: charged particle/light hadron suppression
 • LHC: \(D\) meson suppression at forward rapidity
• nPDF fits with forward \(D\) meson input: smaller gluon density in nuclei
• UPC results also indicate smaller gluon density in nuclei
• However, some open questions:
 • RHIC and LHC see effects at different \(x\)
 • Multiple interactions near kinematic limits?
 • Tension between ALICE forward muons and LHCb \(D\) mesons
 • Impact of flow-like effects? Final state scattering?

New/cleaner measurements (photons; maybe UPC?) and/or confirmation by multiple experiments very welcome!
Two-particle correlations: concept

QCD $2 \rightarrow 2$ scattering

Produces a back-to-back jet

CGC: recoil taken by multiple gluons

Soft gluon recoil

Recoil jet broadened/disappears

Attractive observable:
- Conceptually simple interpretation
- Probes multiple gluon interactions (CGC/saturation)
- Scan x (and Q^2) by varying rapidity of both jets

Kharzeev et al, hep-ph/0403271
De-correlation of recoil yield for fwd-fwd correlations

- Consistent with CGC: coherent gluon field
- Very low p_T; other effects, e.g. multiple parton interactions might play a role
Di-hadron correlations at RHIC: PHENIX

Experimental review of saturation, Initial Stages 2021

Scan ‘x’ with p_{T1} and forward, mid rapidity

Similar effects, trends as a function of x

Large suppression at ‘x’ $< 10^{-3}$ in central events
Di-hadron correlations at LHC

Multiplicity dependence of di-hadron correlations

Try to separate jet-like and flow-like correlations?
Near side long range amplitude 20-50 per cent of away side!
Di-hadron correlations at LHC

G Giacalone, C Marquet, NPA 982, 291 (QM2018)

Away-side peak after flow subtraction

Assumes pure v_2; near-away symmetry for long-range component

Yield suppression and mild broadening?

Comparison to CGC calculation

Theory calculations show narrow peak; add final state radiation/shower effects?
Summary

• Multiple indications of saturation/reduced gluon density at small x in the data:
 • DIS on nuclei
 • Forward particle production at RHIC and LHC
 • UPC
 • Di-hadron correlations — so far not conclusive?
• However, not a ‘closed case’
 • Are RHIC and LHC consistent?
 • (Most) observed are at small p_T: theory uncertainties?
 • Di-hadron correlations not systematically explored
• Possible future directions
 • Other forward hadron production at LHC, e.g. charged (identified) particles in LHCb
 • Photons at fwd rapidity: ALICE FoCal, LHCb
 • Systematically explore forward correlations at LHC
 • EIC
Thank you for your attention!
ALICE FoCal upgrade

FoCal-E: high-granularity Si-W sampling calorimeter for photons and π⁰

FoCal-H: conventional metal-scintillator sampling calorimeter for photon isolation and jets

Observables:
- π⁰ (and other neutral mesons)
- **Isolated (direct) photons**
- Jets (and di-jets)
- J/ψ (ϒ) in UPC
- W, Z
- Event plane and centrality

Letter of Intent: LHCC-2020-009

Reweighted gluon PDFs

R. A. Khalek et al, JHEP 09 (2020) 183
Hidden charm: forward/backward J/Ψ production

ALICE, JHEP 07 (2018) 160

Caveat: J/Ψ hadronisation and possible final state effects (e.g. co-movers) introduce sizeable uncertainties

Suppression at low $p_T < 6$ GeV qualitatively consistent with CGC expectations

nPDFs show less p_T dependence

Experimental review of saturation, Initial Stages 2021
x-Dependence of PDF modification

EPPS16, EPJC 77, 163

\[R_i^A(x, Q^2) = \begin{cases}
\frac{a_0 + a_1(x - x_a)^2}{b_0 + b_1 x^\alpha + b_2 x^{2\alpha} + b_3 x^{3\alpha}} & x \leq x_a \\
\frac{c_0 + (c_1 - c_2 x)(1 - x)^{-\beta}}{x_a \leq x \leq x_e} & x_e \leq x \leq 1
\end{cases} \]

- parameterisation of \(R_A \)
- shape similar to EPS09
- at low \(x \) leads to “plateau” in \(\log(x) \)

- likely not sufficient
- more flexible PDF used for LHeC estimates

![Graph showing x-Dependence of PDF modification](image)
Constraining nPDFs with charm: reweighting

This reweighting procedure with a parametrised NLO calculation results in large shadowing; predict significant suppression at mid-rapidity; tension with data
Reweighting with charm, beauty

(a) D RnPDFs

(b) $B \to J/\psi$ RnPDFs

(c) J/ψ RnPDFs
Changing the total cross section?

Jyvaskyla group: ATLAS EW data suggest that effective total cross section is smaller in p-Pb than free nucleons.

PHENIX R_{dAu}: unexpected centrality dependence. Suggested interpretation: total cross section depends on x?
Forward di-jet correlations at LHC

Di-jets with p_T 28-45 GeV

Some bins show difference, but no clear trend…

TMD framework calculation

TMD: expect ‘dip’ near $\Delta \phi = \pi$ for balancing jets

Physical origin?
Di-hadron correlations

Albacete, Giacalone, Marquet, Matas, PRD 99, 014002

Experimental review of saturation, Initial Stages 2021

LHC prediction

- pA, 5 < \pT < 7 GeV
- pp, 5 < \pT < 7 GeV
- pA, 7 < \pT < 10 GeV
- pp, 7 < \pT < 10 GeV

\(R_{pA} \)

\(3 < \eta < 4 \)

\(4 < \eta < 5 \)

\(\sqrt{s} = 8.8 \text{ TeV} \)
Di-hadron correlation CGC theory: RHIC

Stasto, Wei, Xiao, Yuan, PLB 784, 301
Gluon Densities at small x

Even in the proton, limited information about gluons at $x < 10^{-4}$

Ratio Pb/p has large uncertainties over broad range $x < 10^{-2}$
nPDFs with minimal constraints: nNNPDF

nNNPDF use a more flexible parametrisation of PDFs at Q_0

R.A. Khalek et al, EPJ C 79, 6

nNNPDF 2.0: include LHC electroweak data

DIS only vs DIS + LHC

- DIS input only covers $x > 10^{-2}$
- LHC EW data reduce uncertainty at small x
 - prefer no shadowing, $R_g \approx 1$

Experimental review of saturation, Initial Stages 2021
LHC vs RHIC

LHC: $x \approx 10^{-4} - 10^{-5}$ accessible, with $p_T \sim Q\sim 3-4$ GeV

RHIC forward: kinematic limit at $p_T \sim 5$ GeV

RHIC d+Au 200 GeV

RHIC fwd x^2

ALICE FoCal upgrade

kinematically excluded

saturation region

y
Proton structure: parton density functions

Low Q^2: valence structure

Valence quarks ($p = uud$)

$x \sim 1/3$

Soft gluons

x: momentum fraction carried by parton

Q^2 evolution (gluons)

Gluon content of proton rises quickly with Q^2

Something must ‘tame’ the gluons at low x

non-linear evolution, gluon fusion?
Saturation/Color Glass Condensate

Structure of a Nucleus

- Low x: large gluon density
- Low Q^2: large effective size of gluons

Strong fields, large occupation numbers

Large theoretical interest:
- Fundamentally new regime of QCD
- Theoretically calculable: Classical color fields; JIMWLK, etc

Experimental/phenomenological question:
Where/when is CGC dynamics relevant/dominant?

Non-linear evolution \Leftrightarrow Reduced gluon density \Leftrightarrow Suppression of yield
$1 + \text{many instead of } 2 \rightarrow 2 \Leftrightarrow$ Suppression of recoil jet (mono-jets?)
Multi-gluon emission and interference \Leftrightarrow Azimuthal anisotropy (flow-like effects)
Probing the gluon density in a hadron collider

Direct photon production

Incoming partons: quark and gluon

direct-γ, Compton (LO)

Sensitive to **gluons at LO**

Photon momentum directly related to incoming partons

Charm production

Incoming partons: 2 gluons

Heavy hadron:
also directly sensitive
but fragmentation reduces
kinematic constraint

More processes contribute, e.g. gluon splitting