Quantum Simulation for Heavy-ion Physics

Yukari Yamauchi

in collaboration with Tom Cohen, Henry Lamm, and Scott Lawrence based on papers in preparation (2101.xxxxx and 2102.xxxxx)

11 January 2021 at IS2021

Nearly Perfect Liquid

In the middle of heavy-ion collision, the fireball is a nearly perfect liquid!

200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid

Huichao Song,^{1,2} Steffen A. Bass,³ Ulrich Heinz,² Tetsufumi Hirano,^{4,1} and Chun Shen²

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA ³Department of Physics, Duke University, Durham, North Carolina 27708, USA ⁴Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan (Dated: October 29, 2018)

$$\frac{1}{4\pi} < \frac{\eta}{s} < \frac{2.5}{4\pi} \ {\rm when} \ {\rm T_c} < {\rm T} \lesssim 2 {\rm T_c}$$

Can we confirm this result from **first principles**, i.e. QCD?

Viscosity from First Principles

In underlying microscopic theory, shear viscosity is defined with

correlators of the energy-momentum tensor T_{ij}

Green-Kubo formula

$$\eta(T) = \lim_{\omega \to 0} \lim_{\vec{k} \to 0} \frac{\pi}{\omega} \int_0^\infty dt \int_V d\vec{x} e^{i(\omega t - \vec{k} \cdot \vec{x})} \langle \phi(T) | [T_{13}(t, \vec{x}), T_{13}(0, 0)] | \phi(T) \rangle$$

Alternatively

$$\int_{V} d\vec{x} e^{i\vec{k}\cdot\vec{x}} \langle \phi(T) | \left[T_{01}(t,\vec{x}), T_{01}(0,0) \right] | \phi(T) \rangle \sim e^{-\frac{\eta k^2}{\epsilon} t}, \ (\epsilon: \text{energy density})$$

Near the phase transition, medium is **strongly-coupled**. **Non-perturbative** calculation of Real-time correlators on a **lattice**?

- Lattice QCD in 3 + 1d on a **classical** computer?
 - \rightarrow Sign problem (could be removed¹)
- Lattice QCD in 3d on a quantum computer?
 - \rightarrow Quantum Computer is a quantum system evolved in real-time

Viscosity is *natural* in a quantum simulation.

¹S. Lawrence and YY in preparation

A Quantum Computer - Qubits and Gates Qubits are quantum spins The Hilbert space: 2^N-dimensional for N qubits

 $|\psi\rangle = a|0000000\rangle + b|1000000\rangle + c|0100000\rangle + \cdots$

Once you do measurement, ψ collapses to one of those basis state

Gates apply to qubits and change the state on qubits

• 1 -qubit gates in matrix form...

$$H = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$$
, $T = egin{pmatrix} e^{i\pi/8} & 0 \ 0 & e^{-i\pi/8} \end{pmatrix}$

• 2 -qubit gates in matrix form ... example Controlled-not (CNOT)

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{aligned} & |00\rangle \mapsto |00\rangle \,, \ |01\rangle \mapsto |01\rangle \\ & |10\rangle \mapsto |11\rangle \,, \ |11\rangle \mapsto |10\rangle \end{aligned}$$

Building Blocks of Quantum Simulation of QFT on a Lattice

Quantum Computer is a quantum system evolved in real-time

Ingredients for Viscosity of QCD Matter²

```
\langle \phi(T) | [T(t, \vec{x}), T(0, 0)] | \phi(T) \rangle
```


²H. Lamm, S. Lawrence and YY in preparation

Ingredients for Viscosity of QCD Matter

 $\left\langle \phi(T) \right| \left[T(t, \vec{x}), T(0, 0) \right] \left| \phi(T) \right\rangle$

SU(3): Infinite dimensional Hilbert space. \rightarrow Need to truncate! A proposal: Use the largest crystal-like subgroup of SU(3), $S(1080) \rightarrow 11$ qubits/link.³

³A. Alexandru et al., Phys.Rev.D 100(2019)11, 114501

Ingredients for Viscosity of QCD Matter

 $\langle \phi(T) | [T(t, \vec{x}), T(0, 0)] | \phi(T) \rangle$

Implement e^{-iHt} with local gates⁴, where $H_{S(1080)} = \sum_{L} K_{L} + \sum_{P} V_{P}$ **Trotterization**: $e^{-iHt} = [e^{-iH\epsilon}]^{t/\epsilon} \approx [e^{-i\epsilon K_{1}}e^{-i\epsilon K_{2}} \cdots e^{-i\epsilon V_{1}}e^{-i\epsilon V_{2}} \cdots]^{t/\epsilon}$ Circuits for $e^{-i\epsilon K_{L}}$, $e^{-i\epsilon V_{P}}$ via primitive gates.⁵

⁴H. Lamm, S. Lawrence and YY, Phys.Rev.D 100(2019)3, 034518

⁵H. Kumar, S. Lawrence in preparation

Ingredients for viscosity of QCD matter

```
\langle \phi(T) | [T(t, \vec{x}), T(0, 0)] | \phi(T) \rangle
```


Measurement of Correlators (Linear Response) Measure $\langle [T(t,x), T(0,0)] \rangle = \langle \psi | \left[e^{iHt} T_{01}(x) e^{-iHt}, T_{01}(0) \right] | \psi \rangle$

4 Add small perturbation $T_{01}(0)\delta(t)$ to the QCD Hamiltonian

$$H' = H_{QCD} + \epsilon T_{01}(0)\delta(t)$$

2 Time-evolve the initial state $\psi(0) = \psi$ with H' till time t

$$|\psi(t)\rangle = e^{-iHt}e^{-i\epsilon T_{01}(0)}|\psi\rangle$$

Oracle Series 1 Measure $T_{01}(x)$ on the state $|\psi(t)\rangle$

$$\langle T_{01}(x) \rangle = \langle \psi(0) | e^{i\epsilon T_{01}(0)} e^{iHt} T_{01}(x) e^{-iHt} e^{-i\epsilon T_{01}(0)} | \psi(0) \rangle$$

3 Take derivative of $\langle T_{01}(x) \rangle$ with respect to ϵ and then $\epsilon \to 0$

$$\lim_{\epsilon \to 0} \frac{\partial}{\partial \epsilon} \langle T_{01}(x) \rangle = -i \langle \psi | [T_{01}(t,x), T_{01}(0,0)] | \psi \rangle$$

Just as in experiment!

How Much Does the Simulation Cost?

 $\langle \phi(T) | [T(t, \vec{x}), T(0, 0)] | \phi(T) \rangle$

• Number of qubits $\sim \textit{N}_{\textit{link}} imes 11$

• Number of gates $\propto N_{link} \times$ number of time steps / correlator So, suppose you want 20³ lattice with lattice spacing a = 0.1fm You need $\sim 3 \times 10^5$ qubits

Reality

Quantum computer available now is:

- 50 qubits
- circuit depth 20
- noisy..

We'll have to wait for **XX years** to calculate viscosity on a large lattice.

Well, do we need a large lattice?

What if we measure viscosity on a **small lattce**? Let's study **finite-volume effects** in

- N = 4 Super Yang-Mills via AdS/CFT correspondence
- 2 Molecular dynamics simulation

Viscosity of $\mathcal{N} = 4$ Super Yang-Mills

Strong coupling and large N limit of $\mathcal{N} = 4$ **SYM** on the boundary

 \leftrightarrow classical gravity in AdS spacetime in the bulk

 $G^{12,12}$ on the boundary \leftrightarrow solution to **Einstein's Eq** in the bulk

Kubo relation gives the viscosity for $\mathcal{N} = 4$ SYM with:

$$-i\eta = \lim_{\omega \to 0} \frac{\partial G^{12,12}(\omega, k=0)}{\partial \omega}$$

Leading order in ω, k : $G^{12,12}(\omega, k) = -\frac{i\omega}{4\pi}s \rightarrow \frac{\eta}{s} = \frac{1}{4\pi}^6$ Higher order in ω, k may give finite volume effect as k is discretized?

$$G^{12,12} = s \left(-\frac{i}{4\pi} \omega + \frac{1 - \ln(2)}{8\pi^2 T} \omega^2 - \frac{1}{8\pi^2 T} k^2 + \frac{i \ln(2)}{8\pi^3 T^2} \omega k^2 - \frac{C}{8\pi^3 T^2} \omega^3 \right)$$

($C \sim 0.9$, numerically checked) **Finite volume effect**: k can be taken to zero anyway, so **No correction** This is a special feature of CFT.

⁶G. Policastro et al., Phys.Rev.Lett 87(2001)081601

Viscosity from Molecular Dynamics Simulation

Transverse-current autocorrelation method⁷

- Prepare a box (volume L^3) of particles in thermal equilibrium $|F(r)| = e^{-2r}$, repulsive force
- 2 Measure transverse momentum field $\vec{u}(\vec{k},0)$
- **③** Time-evolve the system via molecular dynamics simulation

• Measure $\vec{u}(\vec{k},t)$ and compute $\vec{u}(\vec{k},t)\vec{u}(\vec{k},0)$

$$C(k,t) = \langle \vec{u}(\vec{k},t)\vec{u}(\vec{k},0)
angle \sim e^{-rac{\eta k^2}{
ho}t} ~(
ho:\mathrm{mass~density})$$

⁷B.Palmer, Phys.Rev.E 49(1994)359

Future Work?

While we wait for a "large enough" quantum computer to be build...

- State preparation methods' details
- Estimate of finite volume effects for more "QCD-like" system

Let's think what else we can do on a quantum computer!

Thank you!