Simulating real-time dynamics of hard probes in nuclear matter on a quantum computer

James Mulligan
Lawrence Berkeley National Laboratory

arXiv: 2010.03571

Wibe de Jong
Mekena Metcalf
James Mulligan
Mateusz Ploskon
Felix Ringer
Xiaojun Yao

LBNL (Quantum Information)
LBNL (Nuclear Science)

Initial Stages 2021
Weizmann Institute of Science (virtual)
Jan 11 2021
Experiments measure how cross-sections of hard probes are modified in heavy-ion collisions compared to proton-proton collisions.

\[R_{AA} = \frac{1}{\left\langle N_{\text{coll}} \right\rangle} \frac{dN^{\text{PbPb}}}{dN^{\text{pp}}} \]

Jets

Jet yields are suppressed due to “energy loss” to the dense medium.

Heavy quarks

Heavy quark bound pairs (quarkonium) are “melted” by the hot medium.
Hard probes — theory

- In vacuum: calculate scattering of asymptotic states using perturbative QCD
 Note that there is no sense of “time evolution”

- In medium: must combine probe evolution with hydrodynamic evolution of the QGP
In heavy-ion collisions, the modifications of the probe due to its evolution through the QGP are typically put in “by hand”, rather than a true real-time evolution.

Medium-modified parton shower

- Majumder PRC 88 (2013)
- ...
Real-time dynamics of QCD

Typical methods in lattice QCD have a sign problem and use imaginary instead of real time

$$\int e^{iLt} \quad t \to it$$

Can instead use the Hamiltonian formulation of QCD

- Large Hilbert space can in principle be simulated by quantum computers
- Theoretical formulation ongoing: gauge choice, difficult color algebra, …

see e.g. Jordan, Lee, Preskill `11, Preskill `18, Klco, Savage et al. `18-`20, Cloet, Dietrich et al. `19

Quantum computing may allow for a solution of the real-time dynamics of QCD
Quantum computing

Superposition and entanglement

\[|\psi\rangle = \sum_{i=1}^{2^N} a_i |\psi_i\rangle \]

For \(N \) qubits, there are \(2^N \) amplitudes

e.g. \[|\psi\rangle = a_1 |000\rangle + a_2 |001\rangle + a_3 |010\rangle + a_4 |011\rangle + a_5 |100\rangle + a_6 |101\rangle + a_7 |110\rangle + a_8 |111\rangle \]

If one can control this high-dimensional space, e.g. with appropriate interference of amplitudes, then one can potentially achieve exponential speedup of certain computations

- It is expected that quantum computers can solve some classically hard problems with exponential speedup
- These include a number of highly impactful problems such as quantum simulation
Superconducting circuits have become \(O \left(100 \, \mu s \right) \), long enough to perform \(O \left(10 \, – \, 100 \right) \) two-qubit operations. e.g. Kjaergaard et al. ’20

And a variety of others:

- Trapped ions
- Optical lattice
- Photonics
- Topological
- ...
Quantum devices

Superconducting circuits
- IBM Q
- Google
- Rigetti
- ...:

And a variety of others:
- Trapped ions
- Optical lattice
- Photonics
- Topological
- ...:

Superconducting circuit qubit coherence times have become $O(100 \, \mu s)$, long enough to perform $O(10 - 100)$ two-qubit operations (e.g. Kjaergaard et al. ’20).

The dream: universal, fault-tolerant digital quantum computer
- Shor’s and Grover’s algorithm
- Quantum error correction
- Shor, Preskill, Kitaev, Zoller ...

Noisy Intermediate Scale Quantum (NISQ) era
- Decoherence, limited number of qubits, imperfect gates
- Aim: achieve quantum advantage without full quantum error correction
- Martinis et al. (2019), Zhong et al. (2020)
A near-term approach: Open quantum systems

Study the real time dynamics of the quantum evolution of probes in the nuclear medium (LHC/RHIC/EIC)

Subsystem - Jet/heavy-flavor

Environment - Nuclear matter

\[H(t) = H_S(t) + H_E(t) + H_I(t) \]
A near-term approach: Open quantum systems

Study the real time dynamics of the quantum evolution of probes in the nuclear medium (LHC/RHIC/EIC)

Subsystem - Jet/heavy-flavor

Environment - Nuclear matter

\[H(t) = H_S(t) + H_E(t) + H_I(t) \]

The time evolution is governed by the von Neumann equation:

\[\frac{d}{dt} \rho^{(\text{int})}(t) = -i \left[H^{(\text{int})}_I(t), \rho^{(\text{int})}(t) \right] \]

In the Markovian limit, the subsystem is described by a **Lindblad equation**

\[\frac{d}{dt} \rho_S = -i [H_S, \rho_S] + \sum_{j=1}^{m} \left(L_j \rho_S L_j^\dagger - \frac{1}{2} L_j^\dagger L_j \rho_S - \frac{1}{2} \rho_S L_j^\dagger L_j \right) \]

\[\rho_S = \text{tr}_E[\rho] \]
Open quantum systems: Quarkonia

The evolution of quarkonia in the QGP can be described by the Lindblad equation

\[\text{Akamatsu, Rothkopf et al. '12-'20, Brambilla et al. '17-'20} \]
\[\text{Yao, Mueller, Mehen '18-'20, Sharma, Tiwari '20} \]

"Simple" system: reduces to quantum mechanics (NRQCD)

Currently various approximations are considered

- Markovian limit
 \[\text{Blaizot, Escobedo '18, Yao, Mehen '18, '20} \]
- Small coupling of system and environment
- Semi-classical transport
Open quantum systems: Quarkonia

The evolution of quarkonia in the QGP can be described by the Lindblad equation.

"Simple" system: reduces to quantum mechanics (NRQCD)

Currently various approximations are considered:
- Markovian limit
- Small coupling of system and environment
- Semi-classical transport

NRQCD + semiclassical approach vs. full quantum evolution

Quantum treatment has important phenomenological consequences

Survival probability of the vacuum state

Bjorken expanding QGP \(T_0 = 475 \) MeV

Sharma, Tiwari '20

Akamatsu, Rothkopf et al. '12-'20, Brambilla et al. '17-'20
Yao, Mueller, Mehen '18-'20, Sharma, Tiwari '20
Open quantum systems: Jet broadening

First steps in the direction of jet physics

Markovian master equation describes evolution of jet density matrix:

\[\partial_t P(Q,t) = -R(Q)P(Q,t) + \int dq K(Q,q)P(q,t) \]

where the probability to be in a given momentum state is:

\[P(Q,t) = \langle Q|\rho_S(t)|Q \rangle \]
Quantum simulation

It is exponentially expensive to simulate an N-body quantum system on a classical computer: 2^N amplitudes!

But a quantum computer can naturally simulate a quantum system

State preparation \[|\psi_S\rangle \]

Time evolution \[e^{-iH_S \Delta t} \]

Measurement

Evolution in time steps $\Delta t = t/N_{\text{cycle}}$

Time evolution of closed systems

- Quantum simulation of the Schrödinger equation
- The evolution is unitary and time reversible
Non-unitary evolution

In open quantum systems, the subsystem evolution is non-unitary

\[
\frac{d}{dt} \rho_S = -i [H_S, \rho_S] + \sum_{j=1}^{m} \left(L_j \rho_S L_j^\dagger - \frac{1}{2} L_j^\dagger L_j \rho_S - \frac{1}{2} \rho_S L_j^\dagger L_j \right)
\]

The Stinespring dilation theorem

Any allowed quantum operation can be written as a unitary evolution acting on a larger space (after coupling to appropriate ancilla), and reducing back to the subsystem.
Quantum simulation of open quantum systems

Toy model setup

Two-level system in a thermal environment

\[H_S = -\frac{\Delta E}{2} Z \]

\[H_E = \int d^3x \left[\frac{1}{2} \Pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{4!} \lambda \phi^4 \right] \]

\[H_I = gX \otimes \phi(x = 0) \]

\[\rho_E = \frac{e^{-\beta H_E}}{\text{Tr}_E e^{-\beta H_E}}. \]

Pauli matrices \(X, Y, Z \), interaction strength \(g \)

Lindblad operators

\[L_j \sim g(X \mp iY) \]

\[j = 0, 1 \]

\[J = \begin{pmatrix} 0 & L_0^\dagger & L_1^\dagger & 0 \\ L_0 & 0 & 0 & 0 \\ L_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

Quantum circuit: Lindblad evolution
Quantum circuit synthesis

Approximate unitary operations with a compiled circuit of one- and two-qubit gates

Optimization problem w/unitary loss function

qsearch Siddiqi et al. `20

Single qubit

CNOT

IBM Q

10 CNOT gates/cycle

Error mitigation

Readout error
Constrained matrix inversion IBM Q qiskit-ignis

Unfolding
Nachman, Urbanek, de Jong, Bauer `19

Gate error
Zero-noise extrapolation of CNOT noise using Random Identity Insertions
He, Nachman, de Jong, Bauer `20
Quantum simulation of open quantum systems

Real-time evolution

$P_0(t)$ describes fraction that remains in “bound state”
Similar to t-dependent R_{AA}

$P_0(t)$ describes fraction that remains in “bound state”
Similar to t-dependent R_{AA}

$P_0(t) [\text{fm/c}] (T = 300 \text{ MeV})$

- Runge–Kutta
- Thermal equilibrium

$E_{\Delta E}$

S

Similar to t-dependent R_{AA} describes fraction that remains in “bound state”

arXiv: 2010.03571
Quantum simulation of open quantum systems

Real-time evolution

$P_0(t)$ describes fraction that remains in “bound state”
Similar to t-dependent R_{AA}

The algorithm converges to Lindblad evolution with a small number of cycles

E ΔE

Simulator, $N_{cycle} = 1$
Simulator, $N_{cycle} = 3$
Runge–Kutta
Thermal equilibrium

$P_0(t)$

t [fm/c] ($T = 300$ MeV)

t [1/T]
Quantum simulation of open quantum systems

Real-time evolution

$P_0(t)$ describes fraction that remains in “bound state”

Similar to t-dependent R_{AA}

Graphical Representation

- **IBM Q Vigo device**
 - **Simulation**
 - Uncorrected
 - Simulator, $N_{\text{cycle}} = 1$
 - Runge–Kutta
 - **Thermal equilibrium**

Source: arXiv:2010.03571
Quantum simulation of open quantum systems

Real-time evolution

\(P_0(t) \) describes fraction that remains in “bound state”

Similar to \(t \)-dependent \(R_{AA} \)

\[
\begin{align*}
\text{IBM Q Vigo, } N_{\text{cycle}} = 1, g = 0.3 \\
\text{Uncorrected} & : \quad \text{Simulator, } N_{\text{cycle}} = 1 \\
\text{Readout corrected} & : \quad \text{Runge – Kutta} \\
\text{Readout + RIIM corrected} & : \quad \text{Thermal equilibrium}
\end{align*}
\]

IBM Q Vigo device

Including CNOT gate error correction gives good agreement

Random Identity Insertion Method (RIIM)
Bauer, He, de Jong, Nachman `20

Proof of concept
Summary

Real-time evolution of hard probes in heavy-ion collisions can be formulated as an open quantum system, and encoded in a quantum algorithm. This allows to go beyond semiclassical approximations in current models.

Proof of concept that these systems can be simulated on current and near-term quantum computers, specifically using NISQ era digital quantum computing.

Future steps:
- Extension toward QCD
- Explore different digital/analog devices
- More efficient quantum algorithms and error mitigation
Quantum advantage

Last year

Article

Quantum supremacy using a programmable superconducting processor

Martinis et al. (2019)

53-qubit superconducting circuit device

Algorithm: sampling of random circuits

$O(10^3)$ times faster than best classical supercomputers

Last month

Quantum computational advantage using photons

Han-Sen Zhong1,2, Hui Wang1,2, Yu-Hao Deng1,2, Ming-Cheng Chen1,2, Li-Chao Peng1,3, Yi-Han Luo1,2, Jian Qin1,2, Dian Wu1,2, Xing Ding1,2, Yi Hu1,2, Peng Hu1,2, Xiao-Yan Yang1,2, Wei-Jun Zhang1,2, Hao Li1,2, Yuxuan Li1,2, Xiao Jiang1,2, Lin Gan1,2, Guangwen Yang1,2, Lixing You1,2, Zhen Wang1,2, Li Li1,2, Nai-Le Liu1,2, Chao-Yang Lu1,2, Jian-Wei Pan1,2

Science (2020)

Photonic device — special-purpose

Algorithm: boson sampling

Claim: $O(10^{14})$ times faster than best classical supercomputers
Constrained matrix inversion

IBM Q qiskit-ignis

Prepare states by applying bit-flip X gates and read out

Unfolding

Nachman, Urbanek, de Jong, Bauer `19

ibmq_vigo device
Error mitigation

Readout error

Constrained matrix inversion

IBM Q qiskit-ignis

Gate error

Zero-noise extrapolation of CNOT noise using Random Identity Insertions

He, Nachman, de Jong, Bauer `20

Circuit 1

Circuit 2

Circuit 3
