Initial Stages 2021

On the way to collectivity in rarely interacting systems

HGS-HIRe for FAIR raduate School for Hadron and Ion

Nina Kersting

In collaboration with **Nicolas Borghini Hendrik Roch**

n

Motivation

Initial state Eccentricities Position space

Initial Stages 2021

Final state Anisotropies **Momentum space**

Initial state Eccentricities Position space **Theoretical** description

Initial Stages 2021

Final state Anisotropies **Momentum space**

Initial state Eccentricities Position space

 $N_{\rm resc} \gg 1$

 $\epsilon_2 \ \epsilon_3 \ \epsilon_4 \ \cdot \cdot \cdot$

Initial Stages 2021

Theoretical description

Final state Anisotropies **Momentum space**

Hydrodynamics Collective behaviour

Kinetic theory Few collision regime

 $N_{\rm resc} < 1$

Initial state Eccentricities Position space **Theoretical** description

 $\epsilon_2 \ \epsilon_3 \ \epsilon_4 \ \cdot \cdot \cdot$

Initial Stages 2021

Final state Anisotropies **Momentum space**

Kinetic theory Few collision regime

 $N_{\rm resc} < 1$

Reasons for kinetic theory approach Small and dilute systems

Initial Stages 2021

Initial Stages 2021

for our approaches

How do flow harmonics V_n evolve in time with dependence on the various initial eccentricities ϵ_m ?

Initial Stages 2021

Analytical approach

to calculate time-dependent v_n

Analytical model

Calculate time-dependent anisotropic flow coefficients

 $\mathbf{v}_{n}\left(t,p_{\perp}\right) = \frac{\iint \cos\left(n\left(\phi - \Psi_{n}\right)\right) f\left(t,\mathbf{x},p_{\perp},\phi\right) d^{2}\mathbf{x} \ d\phi}{\iint f\left(t,\mathbf{x},p_{\perp},\phi\right) d^{2}\mathbf{x} \ d\phi}$

to calculate time-dependent v_n Use classical relativistic Boltzmann equation as equation of motion $\left[\partial_t + \mathbf{v} \cdot \nabla\right] f(t, \mathbf{x}, \mathbf{p}) = C_{coll} \left[f(t, \mathbf{x}, \mathbf{p}) \right]$ with loss term of 2-to-2 elastic collision kernel 11

- Calculate time-dependent AFC $\mathbf{v}_{n}\left(t,p_{\perp}\right) = \frac{\iint \cos\left(n\left(\phi - \Psi_{n}\right)\right) f\left(t,\mathbf{x},p_{\perp},\phi\right) d^{2}\mathbf{x} \, d\phi}{\iint f\left(t,\mathbf{x},p_{\perp},\phi\right) d^{2}\mathbf{x} \, d\phi}$

Initial Stages 2021

Analytical model Loss term in Boltzmann equation

to calculate ti

Initial Stages 2021

al approach
me-dependent
$$v_n$$

 $(\mathbf{x}, p_{\perp}, \phi) d^2 \mathbf{x} d\phi$
 $d^2 \mathbf{x} d\phi$
Analytical
model
 \mathbf{x}
Loss term
in Boltzmann equal
 $\mathcal{O}(N_{resc}) =$
reaming distribution function
 $= f^{(0)}(0, \mathbf{x} - t\mathbf{v}, \mathbf{p})$

- Calculate time-dependent AFC $\mathbf{v}_{n}\left(t,p_{\perp}\right) = \frac{\iint \cos\left(n\left(\phi - \Psi_{n}\right)\right)f\left(t,\mathbf{x},p_{\perp},\phi\right)d^{2}\mathbf{x} \, d\phi}{\iint f\left(t,\mathbf{x},p_{\perp},\phi\right)d^{2}\mathbf{x} \, d\phi}$
- $\left[\partial_t + \mathbf{v} \cdot \nabla\right] f(t, \mathbf{x}, \mathbf{p}) = C_{coll} \left[f(t, \mathbf{x}, \mathbf{p}) \right]$
 - with lo
- Few co
- Depen

Initial Stages 2021

• Calculate time-dependent AFC

$$\mathbf{v}_{n}\left(t,p_{\perp}\right) = \frac{\iint \cos\left(n\left(\phi - \Psi_{n}\right)\right) f\left(t,\mathbf{x},p_{\perp},\phi\right)}{\iint f\left(t,\mathbf{x},p_{\perp},\phi\right) d^{2}\mathbf{x} d\phi}$$

• Use classical relativistic Boltzmann equation as equation of motion $\left[\partial_t + \mathbf{v} \cdot \nabla\right] f(t, \mathbf{x}, \mathbf{p}) = C_{coll} \left[f(t, \mathbf{x}, \mathbf{p}) \right]$

with loss term of 2-to-2 elastic collision kernel

- Few collision limit
- Dependence on free-streaming distribution function $f^{(0)}(t, \mathbf{x}, \mathbf{p}) = f^{(0)}(0, \mathbf{x} t\mathbf{v}, \mathbf{p})$
- Initial distribution function (including initial eccentricities) as input for my calculation

Initial Stages 2021

Our approaches to calculate v_n

- Kinetic theory
- 2 dimensional
- Massless particles

Initial Stages 2021

Results

-1+ 1 + +

1 - F

sound &

• Analytical formula (with $t_* \equiv t/R$)

$$v_{2}(t_{*}) = \frac{64\sqrt{\pi} N_{\text{resc}} \epsilon_{2}}{27\left(8 + 3\sqrt{2} \epsilon_{2}^{2}\right)} e^{-\frac{2t_{*}^{2}}{3}}$$

Initial Stages 2021

v₂ from our approaches

Loss term dominates signal for $N_{\rm resc} \lesssim 0.35$

Higher orders in $N_{\rm resc}$ can be neglected in few collision regime

Deviation increases with growing $N_{\rm resc}$

Good agreement for small N_{resc}

Expansion around small times $t \Rightarrow v_2 \propto \epsilon_2 t^3$

$$\left[-t_* I_0\left(\frac{2 t_*^2}{3}\right) + \left(2 t_* + \frac{3}{t_*}\right) I_1\left(\frac{2 t_*^2}{3}\right)\right]$$

v₄ from our approaches with dependence on ϵ_4

• Analytical formula (with $t_* \equiv t/R$)

$$v_{4}(t_{*}) = \frac{2048 \sqrt{\pi} N_{\text{resc}} \epsilon_{4}}{405 \left(384 + 35 \sqrt{2} \epsilon_{4}^{2}\right)} e^{-\frac{2 t_{*}^{2}}{3}} \left[-\left(5 t_{*}^{3} + 21 t_{*} + \frac{54}{t_{*}}\right) I_{0}\left(\frac{2 t_{*}^{2}}{3}\right) + \left(5 t_{*}^{3} + 24 t_{*} + \frac{63}{t_{*}} + \frac{162}{t_{*}^{3}}\right) I_{1}\left(\frac{2 t_{*}^{3}}{3}\right) \right]$$

Initial Stages 2021

• Initial eccentricity ϵ_4 only

- Dilute regions \Rightarrow small contribution to v₄

Initial Stages 2021

• $\pi/4$ -rotated high density region \Rightarrow locally $\epsilon_4 < 0$

- More diluted system
- Denser regions still with $\epsilon_4 < 0$

• Initial eccentricity ϵ_4 only

- Dilute regions \Rightarrow small contribution to v₄

Initial Stages 2021

• $\pi/4$ -rotated high density region \Rightarrow locally $\epsilon_4 < 0$

- More diluted system
- Denser regions still with $\epsilon_4 < 0$

• Initial eccentricity ϵ_4 only

- Dilute regions \Rightarrow small contribution to v₄

Initial Stages 2021

• $\pi/4$ -rotated high density region \Rightarrow locally $\epsilon_4 < 0$

- More diluted system
- Denser regions still with $\epsilon_4 < 0$

• Initial eccentricity ϵ_4 only

- Dilute regions \Rightarrow small contribution to v₄

Initial Stages 2021

• $\pi/4$ -rotated high density region \Rightarrow locally $\epsilon_4 < 0$

- More diluted system
- Denser regions still with $\epsilon_4 < 0$

Density plots

• Initial eccentricity ϵ_4 only

- $\pi/4$ -rotated high density region \Rightarrow locally $\epsilon_4 < 0$
- Dilute regions \Rightarrow small contribution to v₄

Initial Stages 2021

from numerical simulations

 $v_4(t_*)$

- t/R = 3.0y/R()-2-4-20 -42
 - More diluted system
 - Denser regions still with $\epsilon_4 < 0$

Initial Stages 2021

v₄ from our analytical approach with dependence on ϵ_2 and ϵ_4

Two contributions from ϵ_4 and ϵ_2^2 to V_4

Oscillating v_4 with dependence on time t

Contributions compensate each other

v_6 from our analytical approach with dependence on ϵ_2 , ϵ_3 , ϵ_4 and ϵ_6

Initial Stages 2021

Three contributions from ϵ_6 , ϵ_3^2 and $\epsilon_2\epsilon_4$ to v_6

Oscillating v₆ with dependence on time *t*

Additional zero compared to v_4 signal

Contributions compensate each other

Summary

- Loss term dominates the signal of anisotropic flow coefficients v_{2n}
- Rediscovery of $v_{2n} \propto t^{2n+1}$ for kinetic theory (expansion around small times t)
- Oscillation of v_{2n} with dependence on time
- Compensation of linear and non-linear eccentricity-contributions to higher flow harmonics V_{2n}

of our results on time-dependent anisotropic flow coefficients V_{2n} in few collision regime

- Further comparison with RTA-results obtained by our colleagues
- Extension to 3-dimensions and description of massiv particles

Initial Stages 2021

- Further comparison with RTA-results obtained by our colleagues
- Extension to 3-dimensions and description of massiv particles

Thanks for your attention

Initial Stages 2021

 $V_4(t_*)$

- Initial eccentricity ϵ_2 only
- Negative v₄ created

Initial Stages 2021

- Eccentricity $\epsilon_4 > 0$ created
- Leads to increase of v_4

Note: The v_2 signal is much stronger than the v_4 signal.

It is not easy to draw conclusions from this density plot.

Analytical formula

$$v_{4}(t_{*}) = \frac{64\sqrt{\pi} N_{\text{resc}}}{405 \left(384 + 144 \sqrt{2} \epsilon_{2}^{2} + 35 \sqrt{2}\right)} \\ \left[243 \epsilon_{2}^{2} \left(\left(5t_{*}^{3} + 14t_{*} + \frac{24}{t_{*}}\right) I_{0}\left(t_{*}^{2}\right) + 32\epsilon_{4}e^{\frac{t_{*}^{2}}{3}} \left(-\left(5t_{*}^{3} + 21t_{*} + \frac{54}{t_{*}}\right) I_{0}\left(t_{*}^{2}\right) \right) \right] \right]$$

Initial Stages 2021

AFC v_4 for our approaches with dependence on ϵ_2 and ϵ_4

Analytical formula

Initial Stages 2021

AFC v_4 for our approaches with dependence on ϵ_2 and ϵ_4

$$\frac{2 t_*^2}{3} + \left(5t_*^3 + 24t_* + \frac{63}{t_*} + \frac{162}{t_*^3}\right) I_1\left(\frac{2 t_*^2}{3}\right)$$

• Initial eccentricity ϵ_6 only

Initial Stages 2021

- $\pi/6$ -rotated high density region \Rightarrow locally $\epsilon_6 < 0$
- Dilute regions \Rightarrow small contribution to v_6

- Original orientation in denser region regained
- Dilute regions \Rightarrow small contribution to v₆

Initial distribution function

- Initially factorized in position and momentum space $f^{(0)}\left(0,\mathbf{r},\mathbf{p}\right) = G\left(\mathbf{r}\right)F\left(\mathbf{p}\right)$
- Initial distribution function in position space

$$G(\mathbf{r}) \propto \exp\left(-\frac{r^2}{2R^2}\right) \left[1 + \sum_{n=2}^{\infty} \tilde{\epsilon}_n \left(\frac{r}{R}\right)^n \cos\left(n\left(\theta - \Psi_n\right)\right) \exp\left(-\frac{r^2}{2R^2}\right)\right]$$

- Initially isotropy in momentum space $\Rightarrow F(\mathbf{p}) = F(p_T)$ <u>OR</u>
- Anisotropic initial momentum distribution

$$F\left(\mathbf{p}\right) = \tilde{F}\left(p_{\perp}\right) \left[1 + 2\sum_{k=2}^{\infty} \left(w_{k,c}\cos\left(k\phi\right) + w_{k,s}\sin\left(k\phi\right)\right)\right]$$

Initial Stages 2021

• Formula
$$\epsilon_n = \frac{\int G(r,\theta) \cos\left(n\left(\theta - \int G(r,\theta) \cos\left(r\right) r^n\right)\right)}{\int G(r,\theta) r^n}$$

weighted with r^n

 \Rightarrow Outer regions contribute stronger to ϵ_n

Initial Stages 2021

 (Ψ_n)) $r^{n+1} d\theta dr$

 $+1 d\theta dr$

