One fluid may not rule them all

- Collectivity in Pb-Pb, p-Pb and p-p collisions

Huichao Song 宋憲超

Peking University

Initial Stages2021, Jan. 10-16, 2021

Various flow observables in large and small systems

C. Loizides NPA956 (2016) 200

CERN Yellow Report: CERN-LPCC-2018-07

Observable or effect	Pb–Pb	p–Pb (high mult.)	pp (high mult.)
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes
Intermediate $p_{\rm T}$ ("recombination")	yes	yes	yes
Particle ratios	GC level	GC level except Ω	GC level except Ω
Statistical model	$\gamma_s^{\rm GC} = 1, 10-30\%$	$\gamma_s^{ m GC} pprox 1, 20{-}40\%$	MB: $\gamma_s^{\rm C} < 1, 20-40\%$
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{ m out}/R_{ m side} pprox 1$	$R_{ m out}/R_{ m side}\lesssim 1$	$R_{\rm out}/R_{ m side} \lesssim 1$
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	$v_2 - v_4$
(from two particle correlations)			
Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2
Directed flow (from spectators)	yes	no	no
Charge-dependent correlations	yes	yes	yes
Higher-order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6$ "
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics	
Symmetric cumulants	up to $SC(5,3)$	only $SC(4,2)$, $SC(3,2)$	only $SC(4,2)$, $SC(3,2)$
Non-linear flow modes	up to v_6	not measured	not measured
Weak η dependence	yes	yes	not measured
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured
Direct photons at low $p_{\rm T}$	yes	not measured	not observed
Jet quenching through dijet asymmetry	yes	not observed	not observed
Jet quenching through R_{AA}	yes	not observed	not observed
Jet quenching through correlations	yes (Z-jet, γ -jet, h-jet)	not observed (h-jet)	not measured
Heavy flavor anisotropy	yes	yes	not measured
Quarkonia production	suppressed [†]	suppressed	not measured

One fluid rules all – early work

-superSONIC describes v2 and v3 data in pp, p-Pb and Pb-Pb using a single choice for the fluid parameter

- Suggests *common hydrodynamic origin* including **pp** collisions

Can one fluid rules them all ? -a detailed evaluations from hydrodynamics

Brief review for Pb-Pb, p-Pb collisions

-Success of hydrodynamics (Pb-Pb)

-hydro descriptions; initial /final state effects (p-Pb)

Pb+Pb, p-Pb, p-p collisions

-can one hydrodynamics (with the same parameters) rules them all ?

p-p collisions

-sign of C2{4} & non-linear effect from hydrodynamics

Can one fluid rules them all ? -a detailed evaluations from hydrodynamics

Brief review for Pb-Pb, p-Pb collisions

-Success of hydrodynamics (Pb-Pb)

The Success of Hydrodynamics in Pb+Pb collisions

charged and identified hadrons

The Success of Hydrodynamics in Pb+Pb collisions (II)

V2, V3 for deuterons

Hydro calculations / predictions:

iEBE-VISHNU: Zhao, Xu & Song, Eur. Phys. J. C 77, no. 9, 645 (2017).

Hydro output + coalescence model predictions:

iEBE-VISHNU+coalescence: Zhao, Zhu, Zheng, Ko, Song,Phys.Rev.C 98 5, 054905 (2018)

Hydro quantitatively / qualitatively describe / predict various flow data for Pb+Pb collisions

An quantitatively extract the QGP viscosity

-An quantitatively extraction of the QGP viscosity with iEBE-VISHNU and the massive data evaluation

 $-\eta/s(T)$ is very close to the KSS bound of $1/4\pi$

J. Bernhard, etc.al.PRC94,024907 (2016). Nature Phys.15 (2019) 11, 1113.

Can one fluid rules them all ? -a detailed evaluations from hydrodynamics

Brief review for Pb-Pb, p-Pb collisions

-Success of hydrodynamics (Pb-Pb)

-hydro descriptions; initial /final state effects (p-Pb)

<u>Pb+Pb, p-Pb, p-p collisions</u>

-can one hydrodynamics (fluid) rules them all ?

<u>p-p collisions</u>

-sign of C2{4} & non-linear effect from hydrodynamics

Flow in p-Pb -- Hydrodynamics Simulations

Initial state or Final state effects?

Initial state effects:

– Various Models interpolations

- -K. Dusling and R. Venugopalan, PRL 2012, PRD2013, NPA 2014
- -A. Dumitru and A. V. Giannini, NPA 2015, A. Dumitru and V. Skokov PRD2015
- -B. Schenke, S. Schlichting, P. Tribedy, and R. Venugopalan, PRL2016
- -K. Dusling et al, Phys. Rev. Lett 120 042002 (2018)
- -C. Zhang, et al Phys. Rev. Lett. 122, no. 17, 172302 (2019).

••• ••• •••

Final state interactions:

- -P. Bozek, W. Broniowski, G. Torrieri, PRL2013
- -K. Werner, et. Al., PRL2014
- -G.-Y. Qin, B. Muller. PRC2014
- -Y. Zhou, X. Zhu, P. Li, and H. Song, PRC2015
- P. Bozek, A. Bzdak, and G.-L. Ma, PLB2015
- P. Romatschke, Eur.Phys.J. C77 21(2017)
- -W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018)

••• ••• •••

Can one fluid rule them all ? -a detailed evaluations from hydrodynamics

Brief review for Pb-Pb, p-Pb collisions

-Success of hydrodynamics (Pb-Pb) -hydro descriptions; initial /final state effects (p-Pb)

Pb+Pb, p-Pb, p-p collisions

-can one hydrodynamics with the same parameters rule them all ?

<u>p-p collisions</u>

-sign of C2{4} & non-linear effect from hydrodynamics

Hydrodynamic simulations (iEBE-VISHNÜ +TRENTo) nicely fit the P⊤ spectra and < P⊤ > for Pb-Pb, p-Pb and p-p collisions with the same parameter set -Duke parameter: Phys.Rev.C 101 (2020) 2, 024911 -PKU parameter: (smaller fluctuations) Fu, Zhao & Song, in preparation

Hydrodynamic simulations (iEBE-VISHNU +TRENTo) with both Duke Bayesian parameter / PKU tuned parameter roughly fit v2 v3 measured from 2 particle correlations.

Fu, Zhao & Song, in preparation

Hydrodynamic simulations (iEBE-VISHNU +TRENTo) with both Duke / PKU parameters fails to reproduce negative $c_2{4}$

One fluid rule can not them (Pb-Pb,p-Pb, p-p) all

Sign problem of c₂{4} in p-p collisions

Fu, Zhao & Song, in preparation

Can one fluid rules them all ? -a detailed evaluations from hydrodynamics

Brief review for Pb-Pb, p-Pb collisions

-Success of hydrodynamics (Pb-Pb) -hydro descriptions; initial /final state effects (p-Pb)

<u>Pb+Pb, p-Pb, p-p collisions</u>

-can one hydrodynamics (fluid) rules them all ?

p-p collisions

-sign problem of $C_2{4}$ & non-linear effect from hydrodynamics

Different initial conditions

-Different $p(\varepsilon_2)$ distributions with positive and negative $C_2^{\varepsilon}{4}$

HIJING Zhao Zhou, Xu, Deng & Song, Phys. Lett. B 780, 495 (2018); Super-MC Welsh, Singer & Heinz, PRC 94,024919 (2016). TRENTO: Moreland, Bernhard and Bass, PRC 101, 024911 (2020).

-Hydrodynamics with different initial conditions could roughly describe v_2 & v_3

Zhao, Zhou, Murase & Song Eur. Phys. J.C 80 9, 846 (2020)

Hydro simulations with various initial conditions fails to reproduce negative C2{4}

Zhao, Zhou, Murase & Song Eur. Phys. J.C 80 9, 846 (2020)

$C_{2}{4}$ from hydro with various initial conditions

$P(v_2)$ and $P(\varepsilon_2)$ distributions: from $C_2^{\varepsilon}{4}$ to $C_2^{\nu}{4}$

-Cubic response: $|v_2| = 0.115 |\varepsilon_2| + 0.080 |\varepsilon_2|^3$

-Certain deviations between $P(v_2/\langle v_2 \rangle)$ and $P(\varepsilon_2/\langle \varepsilon_2 \rangle)$ Leading small negative C_2^{ε} {4} change to small positive C_2^{v} {4}

Such sign problem of c_2 {4} in p-p collisions is natural for hydro simulations

Can one fluid rules them all ?

-a detailed evaluations from hydrodynamics

Pb+Pb, p-Pb, p-p collisions

-can one hydrodynamics (fluid) rules them all ?

p-p collisions

-sign problem of C2{4} & non-linear effect from hydrodynamics

Is QGP formed in the small systems? (p-Pb collisions)

Reminder: QGP signals in large systems

NCQ scaling of v2 in p-Pb collisions (EXP)

- An observation of the approximately NCQ scaling at intermediate pT in high multiplicity events of p-Pb collision in data.
- Is it an indication of the partonic degree of freedom?

Hydro-Coal-Frag Hybrid Model

Thermal hadrons (VISH2+1):

 generated by hydro. with Cooper-Frye. Meson: P_T< 2P₁; baryon: P_T< 3P₁.

<u>Coalescence hadrons (Coal Model)</u>:

-generated by coalescences model including thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

-the remnant hard quarks feed to fragmentation .

UrQMD afterburner:

-All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301 (2020)

Spectra of pions, kaons and protons

Our combined model, Hydro-Coal-Frag, gives a nice description of spectra of pion, kaon and proton as well as the P/π over p_T from 0 to 6 GeV.

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301(2020)

v2(pT) and NCQ scaling

-Hydro-Coal-Frag model gives a nice description of $v_2(p_T)$ of pion, kaon and proton over p_T from 0 to 6 GeV.

-At intermediate p_T, Hydro-Coal-Frag model can obtain an approximate NCQ scaling as shown by the data.

Strongly indication of partonic degree of freedom in small system.

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301 (2020).

The importance of quark coalescence in p-Pb collisions

Without coalescence, Hydro-Frag largely underestimates the v2(pT)at intermediate pT, violating the NCQ Scaling of v2

Strongly indication of partonic degree of freedom in small system !

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301 (2020)

Summary

-Can one fluid rule them all (Pb-Pb, p-Pb, p-p collisions) ?

NO !

Hydro simulations with various initial conditions fails to reproduce negative C2{4} in p-p collisions, due to non-linear response.

-Is QGP formed in the small systems (p-Pb collisions)?

Hydro-Coal-Frag calculations (Coalescence mechanism) nicely described NCQ scaling of v2 at mediate pT,

strongly hint partonic degrees of freedom in high multiplicity p-Pb collisions

C2{4} - Experimental measurements

Due to non flow effects, c_2 {4} obtained by standard method strongly depend on N_{ch}^{sel} , even reversing the sign.

3 subevent cumulant can largely suppress the non-flow effects.

C₂{4} obtained by 3-subevent weakly depend on N_{ch}^{sel} at larger <N_{ch}>.

$$\langle \langle 4 \rangle \rangle_{3\text{sub}} = \langle \langle \cos n(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4) \rangle \rangle$$
$$\langle \langle 2 \rangle \rangle^2_{3\text{sub}} = \langle \langle \cos n(\varphi_1 - \varphi_3) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_4) \rangle$$
$$\langle \langle 2 \rangle \rangle^2_{3\text{sub}} = \langle \langle \cos n(\varphi_1 - \varphi_4) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_3) \rangle$$

 $c_n \{4\}_{3sub} = \langle \langle 4 \rangle \rangle_{3sub} - 2 \cdot \langle \langle 2 \rangle \rangle^2_{3sub}$

More details on $C_2{4}$ calculations

Minimize multiplicity fluctuations: (same method as used by ATLAS)

- 1) Cut the multiplicity class with N_{ch}^{sel} within 0.3 < pT < 3.0 GeV, $|\eta|$ < 2.4, calculate
- $C_{2}{2} \& C_{2}{4}$ for events with the same N_{ch}^{sel} to minimize multiplicity fluctuation.
- 2) Combined $c_2{2} \& c_2{4}$ of several N_{ch}^{sel} for the event ensemble.
- 3) Map the N^{sel}_{ch} to the common event activity measure N_{ch} with $p_T > 0.4$ GeV, $|\eta| < 2.4$ to compare with experiment data

gives same results as 2- and 3- subevent methods.

W. Zhao, Y. Zhou, H. Xu, W. Deng and H. Song, Phys. Lett. B 780, 495 (2018)

coalescence model & NCQ scaling of v2

Coalescence model

$$\frac{dN_M}{d^3 \mathbf{P}_M} = g_M \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 f_q(\mathbf{x}_1, \mathbf{p}_1) f_{\bar{q}}(\mathbf{x}_2, \mathbf{p}_2) \times W_M(\mathbf{y}, \mathbf{k}) \delta^{(3)}(\mathbf{P}_M - \mathbf{p}_1 - \mathbf{p}_2) \\
\frac{dN_B}{d^3 \mathbf{P}_B} = g_B \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 d^3 \mathbf{x}_3 d^3 \mathbf{p}_3 f_{q_1}(\mathbf{x}_1, \mathbf{p}_1) \\
\times f_{q_2}(\mathbf{x}_2, \mathbf{p}_2) f_{q_3}(\mathbf{x}_3, \mathbf{p}_3) W_B(\mathbf{y}_1, \mathbf{k}_1; \mathbf{y}_2, \mathbf{k}_2) \times \delta^{(3)}(\mathbf{P}_B - \mathbf{p}_1 - \mathbf{p}_2 - \mathbf{p}_3)$$

Thermal & hard Partons:

- Thermal partons generated by hydro
- *Hard partons* generated by PYTHIA8, then suffered with energy loss by LBT

Coalesence processes:

- thermal thermal parton coalescence
- thermal hard parton coalescence
- hard hard parton coalescence

Hydro-Coal-Frag Hybrid Model

Thermal hadrons (VISH2+1):

 generated by hydro. with Cooper-Frye. Meson: P_T< 2P₁; baryon: P_T< 3P₁.

<u>Coalescence hadrons (Coal Model)</u>:

-generated by coalescences model including thermal-thermal, thermal-hard & hard-hard parton coalescence.

Fragmentation hadrons (LBT):

-the remnant hard quarks feed to fragmentation .

UrQMD afterburner:

-All hadrons are feed into UrQMD for hadronic evolution, scatterings and decays

Zhao, Ko, Liu, Qin & Song, Phys. Rev. Lett. 125 7 072301 (2020)

$V_2(P_T)$ from hydro or fragmentation alone

Hydro or Fragmentation alone can not describe v2(PT) in high multiplicy p-Pb colissions